Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
J Basic Microbiol ; 63(6): 678-686, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36808634

ABSTRACT

Graphilbum species are important blue stain fungi associated with pine trees and are widely distributed throughout Asia, Australia, and North Africa. Pine wood nematode (PWN) primarily feed on ophiostomatoid fungi such as Graphilbum sp. in wood, the population of PWNs was increased, and incomplete organelle structures were observed in Graphilbum sp. hyphal cells following exposure to PWNs. In this study, we showed that Rho and Ras were involved in the MAPK pathway, SNARE binding and small GTPase-mediated signal transduction, and their expression was upregulated in the treatment group. However, the expression of the Rab7 involved in MAPK and small GTPase-mediated signal pathway was downregulated in the treatment group. Thus, further research is needed to study the MAPK pathway and related Ras and Rho genes in Graphilbum sp. associated with the PWN population. Overall, transcriptomic analysis clarified the basic mechanisms of mycelial growth in Graphilbum sp. fungus used as a food source by PWNs.


Subject(s)
Nematoda , Ophiostomatales , Pinus , Animals , Transcriptome , Mycelium , Pinus/microbiology , Nematoda/genetics , Nematoda/microbiology , Plant Diseases/microbiology
2.
J Fungi (Basel) ; 9(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36675896

ABSTRACT

Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) facilitate intracellular vesicle trafficking and membrane fusion in eukaryotes and play a vital role in fungal growth, development, and pathogenicity. However, the functions of SNAREs are still largely unknown in nematode-trapping fungi. Arthrobotrys oligospora is a representative species of nematode-trapping fungi that can produce adhesive networks (traps) for nematode predation. In this study, we characterized AoSec22 in A. oligospora, a homolog of the yeast SNARE protein Sec22. Deletion of Aosec22 resulted in remarkable reductions in mycelial growth, the number of nuclei, conidia yield, and trap formation, especially for traps that failed to develop mature three-dimensional networks. Further, absence of Aosec22 impaired fatty acid utilization, autophagy, and stress tolerance; in addition, the vacuoles became small and fragmented in the hyphal cells of the ∆Aosec22 mutant, and large vacuoles failed to form. The reduced sporulation capacity correlated with the transcriptional repression of several sporulation-related genes, and the impaired accumulation of lipid droplets is in line with the transcriptional repression of several genes involved in fatty acid oxidation. Moreover, absence of Aosec22 remarkably impaired secondary metabolism, resulting in 4717 and 1230 compounds upregulated and downregulated in the ∆Aosec22 mutant, respectively. Collectively, our data highlighted that the SNARE protein AoSec22 plays a pleiotropic role in mycelial growth and development, vacuole assembly, lipid metabolism, stress response, and secondary metabolism; in particular, it is required for the proper development of traps in A. oligospora.

3.
Sci China Life Sci ; 65(2): 412-425, 2022 02.
Article in English | MEDLINE | ID: mdl-34031812

ABSTRACT

Autophagy is an evolutionarily conserved process in eukaryotes, which is regulated by autophagy-related genes (ATGs). Arthrobotrys oligospora is a representative species of nematode-trapping (NT) fungi that can produce special traps for nematode predation. To elucidate the biological roles of autophagy in NT fungi, we characterized an orthologous Atg protein, AoAtg5, in A. oligospora. We found that AoATG5 deletion causes a significant reduction in vegetative growth and conidiation, and that the transcript levels of several sporulation-related genes were significantly downregulated during sporulation stage. In addition, the cell nuclei were significantly reduced in the ΔAoATG5 mutant, and the transcripts of several genes involved in DNA biosynthesis, repair, and ligation were significantly upregulated. In ΔAoATG5 mutants, the autophagic process was significantly impaired, and trap formation and nematocidal activity were significantly decreased. Comparative transcriptome analysis results showed that AoAtg5 is involved in the regulation of multiple cellular processes, such as autophagy, nitrogen metabolism, DNA biosynthesis and repair, and vesicular transport. In summary, our results suggest that AoAtg5 is essential for autophagy and significantly contributes to vegetative growth, cell nucleus development, sporulation, trap formation, and pathogenicity in A. oligospora, thus providing a basis for future studies focusing on related mechanisms of autophagy in NT fungi.


Subject(s)
Ascomycota/physiology , Ascomycota/pathogenicity , Autophagy-Related Protein 5/metabolism , Cell Nucleus/metabolism , Fungal Proteins/metabolism , Nematoda/microbiology , Animals , Ascomycota/classification , Autophagosomes/metabolism , Autophagy-Related Protein 5/genetics , Cell Nucleus/genetics , DNA, Fungal/metabolism , Fungal Proteins/genetics , Gene Expression Profiling , Hyphae/growth & development , Hyphae/metabolism , Mutation , Nitrogen/metabolism , Phylogeny , Spores, Fungal/physiology , Transcription, Genetic , Virulence
4.
Front Cell Infect Microbiol ; 11: 824407, 2021.
Article in English | MEDLINE | ID: mdl-35145926

ABSTRACT

Autophagy is a conserved cellular recycling and trafficking pathway in eukaryotes that plays an important role in cell growth, development, and pathogenicity. Atg1 and Atg13 form the Atg1-Atg13 complex, which is essential for autophagy in yeast. Here, we characterized the roles of the Aolatg1 and Aolatg13 genes encoding these autophagy-related proteins in the nematode-trapping fungus Arthrobotrys oligospora. Investigation of the autophagy process by using the AoAtg8-GFP fusion protein showed that autophagosomes accumulated inside vacuoles in the wild-type (WT) A. oligospora strain, whereas in the two mutant strains with deletions of Aolatg1 or Aolatg13, GFP signals were observed outside vacuoles. Similar results were observed by using transmission electron microscopy. Furthermore, deletion of Aolatg1 caused severe defects in mycelial growth, conidiation, conidial germination, trap formation, and nematode predation. In addition, transcripts of several sporulation-related genes were significantly downregulated in the ΔAolatg1 mutant. In contrast, except for the altered resistance to several chemical stressors, no obvious differences were observed in phenotypic traits between the WT and ΔAolatg13 mutant strains. The gene ontology analysis of the transcription profiles of the WT and ΔAolatg1 mutant strains showed that the set of differentially expressed genes was highly enriched in genes relevant to membrane and cellular components. The Kyoto Encyclopedia of Genes and Genomes analysis indicated that differentially expressed genes were highly enriched in those related to metabolic pathways, autophagy and autophagy-related processes, including ubiquitin-mediated proteolysis and SNARE interaction in vesicular transport, which were enriched during trap formation. These results indicate that Aolatg1 and Aolatg13 play crucial roles in the autophagy process in A. oligospora. Aolatg1 is also involved in the regulation of asexual growth, trap formation, and pathogenicity. Our results highlight the importance of Aolatg1 in the growth and development of A. oligospora, and provide a basis for elucidating the role of autophagy in the trap formation and pathogenicity of nematode-trapping fungi.


Subject(s)
Ascomycota , Nematoda , Animals , Ascomycota/genetics , Ascomycota/metabolism , Autophagy , Nematoda/microbiology , Virulence/genetics
5.
Front Microbiol ; 11: 592524, 2020.
Article in English | MEDLINE | ID: mdl-33304340

ABSTRACT

Autophagy plays an important role in cell growth and development. The autophagy-related gene atg4 encodes a cysteine protease, which can cleave the carboxyl terminus of Atg8, thus plays a role in autophagosome formation in yeast and filamentous fungi. Arthrobotrys oligospora is well known for producing special trapping-devices (traps) and capturing nematodes. In this study, two ΔAolatg4 mutants were generated using targeted gene replacement and were used to investigate the biological functions of autophagy in A. oligospora. Autophagic process was observed using the AoAtg8-GFP fusion protein. The mutants showed a defective in hyphal growth and sporulation and were sensitive to chemical stressors, including menadione and Congo red. The spore yield of the ΔAolatg4 mutants was decreased by 88.5% compared to the wild type (WT), and the transcript levels of six sporulation-related genes, such as abaA, fluG, brlA, and wetA, were significantly downregulated during the conidiation stage. Deletion of Aolatg4 also affected the cell nuclei and mycelial septal development in A. oligospora. Importantly, autophagosome formation and the autophagic process were impaired in the ΔAolatg4 mutant. Moreover, the ΔAolatg4 mutant lost its ability to form mature traps. Our results provide novel insights into the roles of autophagy in A. oligospora.

6.
Front Microbiol ; 10: 1917, 2019.
Article in English | MEDLINE | ID: mdl-31481946

ABSTRACT

The velvet family proteins VosA and VelB are involved in growth regulation and differentiation in the model fungus Aspergillus nidulans and other filamentous fungi. In this study, the orthologs of VosA and VelB, AoVosA, and AoVelB, respectively, were characterized in the nematode-trapping fungus Arthrobotrys oligospora, which captures nematodes by producing trapping devices (traps). Deletion of the AovelB gene resulted in growth defects in different media, and the aerial hyphae from the ΔAovelB mutant lines were fewer in number and their colonies were less dense than those from the wild-type (WT) strain. The ΔAovelB mutants each displayed serious sporulation defects, and the transcripts of several sporulation-related genes (e.g., abaA, flbC, rodA, and vosA) were significantly down-regulated compared to those from the WT strain. Furthermore, the ΔAovelB mutant strains became more sensitive to chemical reagents, including sodium dodecyl sulfate and H2O2. Importantly, the ΔAovelB mutants were unable to produce nematode-capturing traps. Similarly, extracellular proteolytic activity was also lower in the ΔAovelB mutants than in the WT strain. In contrast, the ΔAovosA mutants displayed no obvious differences from the WT strain in these phenotypic traits, whereas conidial germination was lower in the ΔAovosA mutants, which became more sensitive to heat shock stress. Our results demonstrate that the velvet protein AoVelB is essential for conidiation, trap formation, and pathogenicity in A. oligospora, while AoVosA plays a role in the regulation of conidial germination and heat shock stress.

7.
Environ Microbiol ; 21(12): 4648-4661, 2019 12.
Article in English | MEDLINE | ID: mdl-31433890

ABSTRACT

The APSES protein family comprises a conserved class of fungus-specific transcriptional regulators. Some members have been identified in partial ascomycetes. In this study, the APSES protein StuA (AoStuA) of the nematode-trapping fungus Arthrobotrys oligospora was characterized. Compared with the wild-type (WT) strain, three ΔAoStuA mutants grew relatively slowly, displayed a 96% reduction in sporulation capacity and a delay in conidial germination. The reduced sporulation capacity correlated with transcriptional repression of several sporulation-related genes. The mutants were also more sensitive to chemical stressors than the WT strain. Importantly, the mutants were unable to produce mycelial traps for nematode predation. Moreover, peroxisomes and Woronin bodies were abundant in the WT cells but hardly found in the cells of those mutants. The lack of such organelles correlated with transcriptional repression of some genes involved in the biogenesis of peroxisomes and Woronin bodies. The transcript levels of several genes involved in the cAMP/PKA signalling pathway were also significantly reduced in the mutants versus the WT strain, implicating a regulatory role of AoStuA in the transcription of genes involved in the cAMP/PKA signalling pathway that regulates an array of cellular processes and events. In particular, AoStuA is indispensable for A. oligospora trap formation and virulence.


Subject(s)
Ascomycota/metabolism , Ascomycota/pathogenicity , Fungal Proteins/metabolism , Nematoda/microbiology , Spores, Fungal/growth & development , Transcription Factors/metabolism , Animals , Ascomycota/genetics , Ascomycota/growth & development , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Signal Transduction , Spores, Fungal/genetics , Spores, Fungal/metabolism , Transcription Factors/genetics , Virulence
8.
Front Microbiol ; 10: 3065, 2019.
Article in English | MEDLINE | ID: mdl-31993040

ABSTRACT

Inducer of meiosis 2 (Ime2), a protein kinase that has been identified in diverse fungal species, functions in the regulation of various cellular processes, such as ascospore formation, pseudohyphal growth, and sexual reproduction. In this study, AoIme2, an ortholog of Saccharomyces cerevisiae Ime2, was characterized in the nematode-trapping fungus Arthrobotrys oligospora. Disruption of the gene Aoime2 caused defective growth, with slower mycelial growth in ΔAoime2 mutants than the wild type (WT) strain, and in the mutants, the number of hyphal septa in mycelia was higher and the number of cell nuclei in mycelia and conidia was considerably lower than in the WT strain. The conidial yields of the ΔAoime2 mutants were decreased by ∼33% relative to the WT strain, and the transcription of several sporulation-related genes, including abaA, fluG, rodA, aspB, velB, and vosA, was markedly downregulated during the conidiation stage. The ΔAoime2 mutants were highly sensitive to the osmotic stressors NaCl and sorbitol, and the cell wall of partial hyphae in the mutants was deformed. Further examination revealed that the cell wall of the traps produced by ΔAoime2 mutants became loose, and that the electron-dense bodies in trap cells were also few than in the WT strain. Moreover, Aoime2 disruption caused a reduction in trap formation and serine-protease production, and most hyphal traps produced by ΔAoime2 mutants did not form an intact hyphal loop; consequently, substantially fewer nematodes were captured by the mutants than by the WT strain. In summary, an Ime2-MAPK is identified here for the first time from a nematode-trapping fungus, and the kinase is shown to be involved in the regulation of mycelial growth and development, conidiation, osmolarity, and pathogenicity in A. oligospora.

9.
Wei Sheng Wu Xue Bao ; 54(7): 754-9, 2014 Jul 04.
Article in Chinese | MEDLINE | ID: mdl-25252456

ABSTRACT

OBJECTIVE: We isolated actinomyces from the termitarium and studied its metabolites to find the antimicrobial compounds. METHODS: We determined the taxonomic status of target strain BYC 01 by morphological observation and 16s rRNA sequence analysis. Growth rate method and agar disc diffusion assays were used to test the antimicrobial activities. Fermentation product was isolated and purified by various chromatographic methods, and the structure was determined by mass spectrum and nuclear magnetic resonance analyses. RESULTS: BYC 01 was identified as Streptomyces violaceoruber. The main antimicrobial ingredients of BYC 01 fermentation broth consisted in the ethyl acetate fraction of moderate polar part. The ethyl acetate extract of BYC 01 had strong antifungal activities against Valsa mali with inhibition rate of more than 90%, and activities against Rhizoctonia solani and Dothiorella gregaria with inhibition rate of more than 60% under the concentration of 100 microg/mL. Furthermore, the extract showed the intermediate antimicrobial activities against Candida albicans, Staphyloccocus aureus, Escherichia coli, Bacillus subtilis and Xanthomonas oryzae with the mean halo diameters ranging from 11.3 to 16.5 mm under the concentration of 30 microg/filter paper. A monomer compound was purified from the fermentation products, and was identified as fogacin on the basis of mass spectrum and nuclear magnetic resonance analyses. The compound fogacin and the positive control had similar antimicrobial activities against C. albicans with inhibition zone of 19.3 mm and 20.1 mm under the concentration of 30 microg/filter paper. CONCLUSION: Strain BYC 01 could be potentially developed as a new antimicrobial agent.


Subject(s)
Anti-Infective Agents/metabolism , Anti-Infective Agents/pharmacology , Isoptera/microbiology , Streptomyces/chemistry , Streptomyces/isolation & purification , Animals , Anti-Infective Agents/chemistry , Bacteria/drug effects , Fungi/drug effects , Microbial Sensitivity Tests , Molecular Sequence Data , Phylogeny , Streptomyces/classification , Streptomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...