Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 184: 176-184, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28591640

ABSTRACT

Ageing is a common phenomenon during biochar storage and its soil application. In this study, we exposed sludge-derived biochar (SDBC) in the air under 4 °C, 22 °C, and 45 °C for 30-120 d to imitate the ageing process after SDBC production. The aged SDBC was characterized and its sorption capacities for Pb(II), Cr(V) and As(III) were compared with the fresh ones in batch sorption experiments. The results showed an increase in acidity, cation exchange capacity, and carboxyl groups of SDBC surface, but a decrease in alkalinity and Fe(III) species during ageing, indicating the oxidation. In addition, ageing for more than 30 d was found to favor the Pb(II) and As(III) sorption, because of higher density of available oxygen-containing groups. The Cr(VI) sorption was found to be compromised by the ageing, because some reducing agents for Cr(VI) reduction was consumed there. Higher temperatures accelerated the above-mentioned ageing effect. Yet, when the SDBC was applied in the heavy-metal contaminated soil, its performance would be affected by both ageing of SDBC itself as well as long-term interactions among soil components, such as colloids and solution, heavy metals, and SDBC, which require further investigation.


Subject(s)
Charcoal/chemistry , Environmental Pollutants/chemistry , Metalloids/chemistry , Metals/chemistry , Meteorological Concepts , Models, Chemical , Temperature , Atmosphere/chemistry , Cations , Environmental Pollutants/analysis , Ferric Compounds , Metalloids/analysis , Metals/analysis , Sewage , Soil , Surface Properties
2.
Environ Sci Pollut Res Int ; 22(20): 16031-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26062468

ABSTRACT

Pyrolyzing municipal wastewater treatment sludge into biochar can be a promising sludge disposal approach, especially as the produced sludge-derived biochar (SDBC) is found to be an excellent sorbent for heavy metals and atrazine. The aim of this study was to investigate how and why the coexisting humic acids influence the sorption capacity, kinetic, and binding of these contaminants on SDBC surface. Results showed humic acids enhanced Pb(II)/Cr(VI) sorption binding, and increased the corresponding Pb(II) Langmuir sorption capacity at pH 5.0 from 197 to 233 µmol g(-1), and from 688 to 738 µmol g(-1) for Cr(VI) at pH 2.0. It can be mainly attributed to the sorbed humic acids, whose active functional groups can offer the additional sites to form stronger inner-sphere complexes with Pb(2+), and supply more reducing agent to facilitate the transformation of Cr(VI) to Cr(III). However, humic acids reduced the atrazine adsorption Freundlich constant from 1.085 to 0.616 µmol g(-1). The pore blockage, confirmed by the decreased BET-specific surface area, as well as the more hydrophilic surface with more sorbed water molecules may be the main reasons for that suppression. Therefore, the coexisting humic acids may affect heavy metal stabilization or pesticide immobilization during SDBC application to contaminated water or soils, and its role thus should be considered especially when organic residues are also added significantly to increase the humic acid content there.


Subject(s)
Atrazine/chemistry , Charcoal/chemistry , Chromium/chemistry , Environmental Restoration and Remediation/methods , Humic Substances/analysis , Lead/chemistry , Sewage/chemistry , Adsorption , Environmental Restoration and Remediation/instrumentation , Kinetics , Pesticides/chemistry , Wastewater/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...