Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36679082

ABSTRACT

Subtilisin-like proteases (subtilases) are found in almost all plant species and are involved in regulating various biotic and abiotic stresses. Although the literature on subtilases in different plant species is vast, the gene function of the serine peptidase S8 family and its maize subfamily is still unknown. Here, a bioinformatics analysis of this gene family was conducted by describing gene structure, conserved motifs, phylogenetic relationships, chromosomal distributions, gene duplications, and promoter cis-elements. In total, we identified 18 ZmSPS8 genes in maize, distributed on 7 chromosomes, and half of them were hydrophilic. Most of these proteins were located at the cell wall and had similar secondary and tertiary structures. Prediction of cis-regulatory elements in promoters illustrated that they were mainly associated with hormones and abiotic stress. Maize inbred lines B73, Zheng58, and Qi319 were used to analyze the spatial-temporal expression patterns of ZmSPS8 genes under drought treatment. Seedling drought results showed that Qi319 had the highest percent survival after 14 d of withholding irrigation, while B73 was the lowest. Leaf relative water content (LRWC) declined more rapidly in B73 and to lower values, and the nitrotetrazolium blue chloride (NBT) contents of leaves were higher in Qi319 than in the other inbreds. The qPCR results indicated that 6 serine peptidase S8 family genes were positively or negatively correlated with plant tolerance to drought stress. Our study provides a detailed analysis of the ZmSPS8s in the maize genome and finds a link between drought tolerance and the family gene expression, which was established by using different maize inbred lines.

2.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955541

ABSTRACT

Variation in flowering plays a major role in maize photoperiod adaptation during long-term domestication. It is of high value to investigate the genetic basis of maize flowering under a wide range of environmental conditions in order to overcome photoperiod sensitivity or enhance stress tolerance. A recombinant inbred line (RIL) population derived from a cross between Huangzaosi and Mo17, composed of 121 lines and genotyped by 8329 specifically developed markers, was field evaluated in two consecutive years under two planting densities (67,500 and 120,000 plants ha-1) and two water treatments (normal irrigation and drought stress at the flowering stage). The days to silking (DTS), days to anthesis (DTA), and anthesis to silking interval (ASI) were all evaluated. Within the RIL population, DTS and DTA expanded as planting density and water deficit increased. For DTA, DTS, ASI, and ASI-delay, a total of 22, 17, 21, and 11 QTLs were identified, respectively. More than two significant QTLs were identified in each of the nine chromosomal intervals. Under diverse conditions and locations, six QTLs (quantitative trait locus) for DTS and DTA were discovered in Chr. 8: 118.13-125.31 Mb. Three chromosome regions, Chr. 3: 196.14-199.89 Mb, Chr. 8: 169.02-172.46 Mb, and Chr. 9: 128.12-137.26 Mb, all had QTLs for ASI-delay under normal and stress conditions, suggesting their possible roles in stress tolerance enhancement. These QTL hotspots will promote early-maturing or multiple abiotic stress-tolerant maize breeding, as well as shed light on the development of maize varieties with a broad range of adaptations.


Subject(s)
Quantitative Trait Loci , Zea mays , Chromosome Mapping , Phenotype , Plant Breeding , Quantitative Trait Loci/genetics , Stress, Physiological/genetics , Zea mays/genetics
3.
Genes (Basel) ; 13(4)2022 03 23.
Article in English | MEDLINE | ID: mdl-35456369

ABSTRACT

Drought is one of the most critical environmental factors constraining maize production. When it occurs at the flowering stage, serious yield losses are caused, and often, the damage is irretrievable. In this study, anthesis to silk interval (ASI), plant height (PH), and ear biomass at the silking date (EBM) of 279 inbred lines were studied under both water-stress (WS) and well-water (WW) field conditions, for three consecutive years. Averagely, ASI was extended by 25.96%, EBM was decreased by 17.54%, and the PH was reduced by 12.47% under drought stress. Genome-wide association studies were carried out using phenotypic values under WS, WW, and drought-tolerance index (WS-WW or WS/WW) and applying a mixed linear model that controls both population structure and relative kinship. In total, 71, 159, and 21 SNPs, located in 32, 59, and 12 genes, were significantly (P < 10−5) associated with ASI, EBM, and PH, respectively. Only a few overlapped candidate genes were found to be associated with the same drought-related traits under different environments, for example, ARABIDILLO 1, glycoprotein, Tic22-like, and zinc-finger family protein for ASI; 26S proteasome non-ATPase and pyridoxal phosphate transferase for EBM; 11-ß-hydroxysteroid dehydrogenase, uncharacterised, Leu-rich repeat protein kinase, and SF16 protein for PH. Furthermore, most candidate genes were revealed to be drought-responsive in an association panel. Meanwhile, the favourable alleles/key variations were identified with a haplotype analysis. These candidate genes and their key variations provide insight into the genetic basis of drought tolerance, especially for the female inflorescence, and will facilitate drought-tolerant maize breeding.


Subject(s)
Genome-Wide Association Study , Zea mays , Dehydration , Droughts , Plant Breeding , Water , Zea mays/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...