Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 61(8): 1994-2006, 2022 Mar 10.
Article in English | MEDLINE | ID: mdl-35297892

ABSTRACT

In this paper, the problems of decreasing coupling efficiency and energy distribution divergence of water beam fiber caused by static alignment deviation are studied. Based on the basic conditions of coupling between laser and water beam fiber, the mathematical model of coupling efficiency of water beam fiber is established, and the calculation equation of coupling efficiency is modified. The variation of coupling efficiency and energy distribution of water beam fiber under the influence of static alignment deviation is analyzed by numerical simulation, and the correctness of theoretical derivation and simulation model is verified by experiments. The results show that the lateral deviation changes the transmission path of laser in the water beam fiber to a large extent, and its influence on the energy distribution in the water beam fiber is greater than that of longitudinal deviation and angular deviation.

2.
Micromachines (Basel) ; 11(2)2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32024180

ABSTRACT

Aluminum alloys are widely used, but they are prone to contamination or damage under harsh working environments. In this paper, a self-cleaning superhydrophobic aluminum alloy surface with good corrosion resistance was successfully fabricated via the combination of sand peening and electrochemical oxidation, and it was subsequently covered with a fluoroalkylsilane (FAS) film. The surface morphology, surface wettability, and corrosion resistance were investigated using a scanning electron microscope (SEM), an optical contact angle measurement, and an electrochemical workstation. The results show that binary rough structures and an FAS film with a low surface energy on the Al alloy surfaces confer good superhydrophobicity with a water contact angle of 167.5 ± 1.1° and a sliding angle of 2.5 ± 0.7°. Meanwhile, the potentiodynamic polarization curve shows that the corrosion potential has a positively shifted trend, and the corrosion current density decreases by three orders of magnitude compared with that of the original aluminum alloy sample. In addition, the chemical stability of the as-prepared superhydrophobic surface was evaluated by dripping test using solutions with different pH values for different immersion time. It indicates that the superhydrophobic surface could provide long-term corrosion protection for aluminum alloys. Consequently, the as-prepared superhydrophobic surface has excellent contamination resistance and self-cleaning efficacy, which are important for practical applications.

3.
Micromachines (Basel) ; 10(2)2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30781879

ABSTRACT

A superhydrophobic surface with low adhesion and good wear resistance was fabricated on Ti6Al4V substrates via TiO2/Ni composite electrodeposition, and subsequently modified with a fluoroalkylsilane (FAS) film. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and optical contact angle measurements were used to characterize the surface morphologies, chemical compositions, and surface wettability. The superhydrophobicity of the as-prepared surface results from the fabrication of a hierarchical structure and the assembly of low-surface energy fluorinated components. The as-prepared surface had a water contact angle as high as 162.6° and a sliding angle close to 1.8°. Scratch and abrasion tests showed that the superhydrophobic coating provided a superior wear resistance and stable mechanical abrasion protection. In addition, the influence of processing conditions, such as working voltage, deposited time, pH value, and TiO2 concentration, was also investigated.

4.
Micromachines (Basel) ; 10(1)2019 Jan 18.
Article in English | MEDLINE | ID: mdl-30669272

ABSTRACT

Anti-adhesive Ni coatings with low wettability were successfully fabricated on Ti6Al4V substrates via an electro-brush plating method, and subsequently modified with a fluoroalkylsilane (FAS) film. The surface morphology, chemical compositions, and wettability of the as-prepared coatings were measured using scanning electron microscopy (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrophotometry (FTIR), and contact angle measurements. The results showed that the surface of Ti6Al4V substrate was endowed with flower-like structures. Each flower-like cluster was constituted by a large number of Ni ions. After surface modification of FAS, the as-prepared Ti6Al4V surface had a water contact angle as high as 151.5°, a sliding angle close to 2.1°, and a solid surface energy as low as 0.97 mJ/m². Potentiodynamic polarization tests showed that the Ni coating could provide a stable corrosion protection. In addition, the effects of processing conditions, such as working voltage, relative velocity, electrolyte concentration, and processing time, were investigated. The mechanism of the adhesive resistance was proposed, and the low wettability of Ti6Al4V surfaces was explained by Cassie⁻Baxter model. As a result, it was necessary to reduce the fraction of the solid⁻liquid interface in order to achieve anti-adhesive surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...