Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1257924, 2023.
Article in English | MEDLINE | ID: mdl-37876786

ABSTRACT

The widespread and continuous cultivation of tobacco has led to soil degradation and reduced crop yields and quality. Green manure is an essential organic fertilizer that alleviates obstacles to continuous cultivation. However, the plant-soil microecological effects of green manure on flue-cured tobacco cultivation remain unclear. Thus, a positioning trail including two treatments, chemical fertilizer application only (treatment NPK) and chemical fertilizer application with turning ryegrass (treatment NPKG) was conducted, and the effect of ryegrass returning on the soil physicochemical properties, soil microbiome, crop yield, and quality of flue-cured tobacco in continuous cropping soil were investigated. Results showed that returning ryegrass to the field increased the thickness of soil humus layer from 13 cm to 15 cm, reduced the humus layer soil bulk density to 1.29 cm3/g. Ryegrass tilled and returned to the field increased soil organic matter content by 6.89-7.92%, increased rhizosphere soil available phosphorus content by 2.22-17.96%, and converted the soil non-exchangeable potassium into potassium that was available for plant absorption and utilization. Ryegrass tilling and returning to the field increased the potassium content of middle leaves of flue-cured tobacco by 7.69-10.07%, the increased potassium content in flue-cured tobacco was accompanied by increased total sugar, reducing sugar, and the ratio of reducing sugar to nicotine, which facilitated the harmonization of the chemical composition of cured tobacco leaves. Moreover, the increased number of markedly improved operational taxonomic units enhanced the complexity of the soil bacterial community and its compactness after ryegrass tillage and their return to the field. The available potassium, available phosphorus, total potassium content, pH, and sampling period of the rhizosphere soil had considerable effects on the rhizosphere microbial. Ryegrass tilling and returning to the field changed the soil microbiome, which increased the abundance of bulk soil Proteobacteria, rhizosphere soil Fibrobacterota, and microbes with anti-pathogen activity (Lysobacteria, Sphingomonas, Chaetomium, and Minimedusa); and reduced the abundance of pathogenic fungi Neocosmospore genus in the soil. In brief, ryegrass returned to the field, improved soil microecology and restored soil nutrients, and established a new dynamic balance of soil ecology, thereby improving the quality of cultivated land and the quality of flue-cured tobacco.

2.
Bioresour Technol ; 384: 129357, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37336454

ABSTRACT

In this study, high-performance Fe-Mn-modified industrial lignin-based biochar (FMBC) was successfully prepared to facilitate the efficient degradation of oxytetracycline by its driven sulfate radical-based advanced oxidation process with 90% degradation within 30 min. The results showed that oxygenated functional groups (e. g. hydroxyl, carbonyl, etc.) in industrial lignin-based biochar, the synergistic effect of transition metals Fe and Mn, and defective structures were the active sites for activation of peroxy-disulfate. SO4·- produced during the degradation process assumed a key function. Significantly, 38 intermediates were innovatively proposed for the first time in the system, and oxytetracycline was degraded in 7 ways, including deamidation, demethylation, hydroxylation, secondary alcohol oxidation, ring opening, dehydration, and carbonylation. A new perspective on the application of industrial lignin in the advanced oxidative degradation of organic pollutants was provided by this study.


Subject(s)
Oxytetracycline , Water Pollutants, Chemical , Iron/chemistry , Manganese/chemistry , Lignin , Water Pollutants, Chemical/chemistry , Charcoal/chemistry
3.
Int J Biol Macromol ; 234: 123689, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36801292

ABSTRACT

In this study, an adsorbent with mesoporous structure and PO/PO bonds is prepared by hydrothermal and phosphoric acid activation from industrial alkali lignin for the adsorption of oxytetracycline (OTC). The adsorption capacity is 598 mg/g, which is three times higher than that of the adsorbent with microporous structure. The rich mesoporous structure of the adsorbent provides adsorption channels and filling sites, and π-π attraction, cation-π interaction, hydrogen bonds, and electrostatic attraction provide adsorption forces at the adsorption sites. The removal rate of OTC exceeds 98 % over a wide range of pH values (3-10). It has high selectivity for competing cations in water, with higher than 86.7 % removal rate of OTC from medical wastewater. After 7 consecutive adsorption-desorption cycles, the removal rate of OTC remains as high as 91 %. This efficient removal rate and excellent reusability indicate the strong potential of the adsorbent for industrial applications. This study prepares a highly efficient, environmentally friendly antibiotic adsorbent that can not only efficiently remove antibiotics from water but also recycle industrial alkali lignin waste.


Subject(s)
Oxytetracycline , Water Pollutants, Chemical , Oxytetracycline/chemistry , Lignin , Carbon , Adsorption , Anti-Bacterial Agents/chemistry , Water , Water Pollutants, Chemical/chemistry , Kinetics
4.
Sci Total Environ ; 867: 161591, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36640881

ABSTRACT

Ammonium nitrogen (NH4+-N) is a form of N that is non-negligible in eutrophication water as well as an essential nutrient for plants growing. Carbon materials are considered superior for the adsorption recovery of excess NH4+-N in water bodies. The sulfonic-humic acid char (SHAC) was prepared from humic acid (HA) by pyrolysis and hydrothermal grafting with sodium allyl sulfonate. SEM-mapping, FTIR and XPS results indicated that sulfonic groups (-SO3H) were successfully grafted onto SHAC. The adsorption kinetic fitting displayed that the adsorption of NH4+-N by SHAC conformed to the pseudo-second-order kinetics and could reach equilibrium in about 100 min. The maximum adsorption of NH4+-N by SHAC was 77.24 mg/g, it was mainly contributed by electrostatic attraction, hydrogen bonding and pore volume sites. SHAC adsorption of NH4+-N resulted in the material SHAC-N, which desorption rate was considerably slower than that of commercially available ammonium chloride (NH4Cl) fertilizer and in accordance with the first order model. Wheat growth experiments revealed that the quality of wheat treated with SHAC-N (higher 100-grain weight and lower nitrate content) was better than that of NH4Cl fertilizer. In addition, the higher residual NH4+-N in the SHAC-N treatment soil facilitated subsequent crop planting. These results indicated that SHAC has excellent adsorption and slow release of NH4+-N, and has great potential application for N management in environment and agriculture.

5.
Int J Biol Macromol ; 229: 62-69, 2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36587637

ABSTRACT

In this study, SiMg doped industrial lignin-based carbon materials (SLCs) were prepared by water bath silicification and MgCl2 activation to remove Cd2+ from aqueous solutions. What's more, the doping of SiMg jointly promoted the excellent physicochemical properties of the material, e.g., high specific surface area, good pore volume, and numerous oxygen-containing groups. The Cd2+ batch adsorption experiments proved that SLCs have good Cd2+ removal capacity within pH 3-7, and the adsorption model demonstrated the adsorption process as a physicochemically complex process. The maximum adsorption of Cd2+ in the SLC was 665.35 mg/g, and the contributing factors to the removal of Cd2+ were as follows: ion exchange (59.36 %) > Cd2+ precipitation (24.93 %) > oxygen-containing functional group complexation (14.79 %) > Cd2+-π interactions (0.92 %). In addition, the complexation of SiO, MgO, and Cd precipitates allowed the formation of a three-dimensional fiber mesh structure. The application of SLCs has the potential to eliminate Cd2+ pollution in water bodies, and its preparation is simple and environmentally friendly. Finally, this study provides a theoretical basis for an in-depth understanding of the mechanism of heavy metal adsorption by inorganic nonmetals in combination with metal oxides.


Subject(s)
Cadmium , Water Pollutants, Chemical , Cadmium/analysis , Wastewater , Lignin , Carbon , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Water , Adsorption , Kinetics
6.
Bioresour Technol ; 369: 128402, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36503835

ABSTRACT

In this study, honeycomb lignin-based biochar (HLB) was prepared by hydrothermal activation using industrial lignin as raw material to remove norfloxacin from water. Batch adsorption test results showed that HLB has a strong ability to remove norfloxacin at a wide pH. The maximum adsorption capacity was 529.85 mg/g at 298 K, which is 1.52-fold to 201.46-fold higher than that of other reported materials. HLB showed good selectivity and recycling ability for the adsorption of norfloxacin, the removal rate of NOR reached 99.5% in the presence of competitive ions and maintained at least 98% removal rate after 12 adsorption cycles. The removal rate of norfloxacin in different water reached more than 99% within 8 mins. Pore filling, electrostatic interaction, π-π interaction, and hydrogen bond contributed significantly to the removal of norfloxacin. Among them, the highly aromatized structure of HLB and the abundant oxygen-containing functional groups (OH, CO, etc.) promoted π-π interaction.


Subject(s)
Norfloxacin , Water Pollutants, Chemical , Norfloxacin/chemistry , Lignin , Adsorption , Water Pollutants, Chemical/chemistry , Charcoal/chemistry , Water , Kinetics
7.
RSC Adv ; 12(45): 29177-29186, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36320774

ABSTRACT

Electrodes for supercapacitors made from metal-organic frameworks (MOFs) are still hindered by electron transfer properties. Therefore, an electrode composite material Ni-MOF@PPy was synthesized from a Ni-based metal-organic framework (Ni-MOF) doped with poly-pyrrole (PPy) using a simple chemical oxidation method to improve its electron transfer property. After introducing the electrochemically active substance K4Fe(CN)6 into the electrolyte, the composite material had a specific capacitance of 1815.4 F g-1 at a current density of 1 A g-1. Ni-MOF@PPy and active carbon (AC) as the positive and negative electrodes have been used, respectively, to assemble asymmetric supercapacitors (ASCs) in the KOH and K4Fe(CN)6 mixed electrolyte. This novel Ni-MOF@PPy//AC ASC energy storage device can provide 38.5 W h kg-1 energy density, 7001 W kg-1 power density, and 90.2% capacitance retention after 3000 cycles. Therefore, Ni-MOF@PPy//AC ASC is an excellent energy storage device with practical and economic value. The synergistic effect strategy proposed in this work can be easily applied to develop other MOFs with unique crystal structures as well as other redox active additives, providing new avenues and research ideas for exploring novel energy storage devices.

8.
Bioresour Technol ; 346: 126652, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34979279

ABSTRACT

A high-performance nitrogen-doped lignin-based carbon material (ILAC-N) was synthesized using industrial lignin and urea by hydrothermal and activation, as an absorbent of tetracycline hydrochloride (TC). The results showed that the ILAC-N comprises a double-channeled structure with micro and mesopores. It exhibits an excellent adsorption capacity of TC across a wide pH range (pH 2-11), with the highest adsorption capacity of 1396 mg g-1 at 323 K. Tests in actual wastewater showed that the TC removal rate by ILAC-N exceeded 97.4%. Moreover, it maintained a removal rate of 84% after 10 regeneration cycles, revealing its high reusability. Mechanisms suggested that pore filling and π-π interaction played a critical role in this process. In conclusion, ILAC-N can be broadly applied to livestock manure and pharmaceutical wastewater treatment, owing to its high adsorption capacity, good adsorption properties across a wide pH range, excellent reusability. Furthermore, this research opens a new path for lignin utilization.


Subject(s)
Tetracycline , Water Pollutants, Chemical , Adsorption , Carbon , Kinetics , Lignin , Nitrogen , Water , Water Pollutants, Chemical/analysis
9.
Adv Mater ; 33(13): e2003327, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33615589

ABSTRACT

The platinum single-atom-catalyst is verified as a very successful route to approach the size limit of Pt catalysts, while how to further improve the catalytic efficiency of Pt is a fundamental scientific question and is challenging because the size issue of Pt is approached at the ultimate ceiling as single atoms. Here, a new route for further improving Pt catalytic efficiency by cobalt (Co) and Pt dual-single-atoms on titanium dioxide (TiO2 ) surfaces, which contains a fraction of nonbonding oxygen-coordinated Co-O-Pt dimers, is reported. These Co-Pt dimer sites originate from loading high-density Pt single-atoms and Co single-atoms, with them anchoring randomly on the TiO2 substrate. This dual-single-atom catalyst yields 13.4% dimer sites and exhibits an ultrahigh and stable photocatalytic activity with a rate of 43.467 mmol g-1 h-1 and external quantum efficiency of ≈83.4% at 365 nm. This activity far exceeds those of equal amounts of Pt single-atom and typical Pt clustered catalysts by 1.92 and 1.64 times, respectively. The enhancement mechanism relies on the oxygen-coordinated Co-O-Pt dimer coupling, which can mutually optimize the electronic states of both Pt and Co sites to weaken H* binding. Namely, the "mute" Co single-atom is activated by Pt single-atom and the activity of the Pt atom is further enhanced through the dimer interaction. This strategy of nonbonding interactive dimer sites and the oxygen-mediated catalytic mechanisms provide emerging rich opportunities for greatly improving the catalytic efficiency and developing novel catalysts with creating new electronic states.

10.
J Hazard Mater ; 413: 125303, 2021 07 05.
Article in English | MEDLINE | ID: mdl-33582463

ABSTRACT

Tobacco is a super-enriched plant for heavy metals, and its productivity is sensitively affected by Cd. In this study, tobacco stalk was converted to biochar (TS-biochar) for the sequestration of Cd in soils to enhance the productivity of tobacco. FTIR, SEM-EDX, and XPS characterizations of TS-biochar together with Cd2+ adsorption kinetics revealed that oxy-containing functional groups (‒OH, CË­O, and ‒COOH) in TS-biochar played a crucial role on Cd2+ adsorption. The changes of soil property and Cd speciation by adding TS-biochar in red (acidic) and cinnamon (alkaline) soils was evaluated. Effects of TS-biochar on tobacco growth and development under Cd stress was also investigated. Results indicated that a 2 wt% addition of TS-biochar in red soil could significantly increase the soil pH value (from 5.21 to 7.39) and reduce exchangeable Cd fractions (from 40% to 23%), but those were not obvious in cinnamon soil. Under the stress of Cd, TS-biochar could obviously improve the tobacco dry biomass, and decrease the accumulation of Cd in the middle and upper leaves, thus reducing economic loss. Overall, the application of TS-biochar on Cd contaminated soil can transform bioavailable Cd into low hazardous forms, so as to repair soils and improve the productivity of tobacco.


Subject(s)
Cadmium , Soil Pollutants , Agriculture , Cadmium/analysis , Cadmium/toxicity , Charcoal , Hazardous Waste , Soil , Soil Pollutants/analysis , Nicotiana
11.
Ecotoxicol Environ Saf ; 207: 111295, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32949930

ABSTRACT

Cadmium (Cd) easily accumulates in tobacco, which endangers public health through Cd exposure from smoking. However, its uptake, translocation, and distribution in tobacco plants during plant development or its response to biochar application are poorly understood. A pot experiment was conducted with tobacco (Yunyan 87) grown in soil severely contaminated with Cd (30 mg kg-1) amended with 0, 1, and 2% (w/w) tobacco stem-derived biochar (BC). The absorption and accumulation of Cd in all parts of the tobacco plants were most active from the rosette stage to the fast growing stage, during which approximately 90% of the Cd deposited in the tobacco leaves occurred, especially in the lower leaves. The Cd concentrations in most plant parts without added biochar decreased significantly by 52.61-78.30% due to the rapid increase in biomass (dilution effect), although the Cd concentration in the lower leaves increased by 48.89% (P < 0.05). However, with the slowdown of the growth rate of tobacco at the maturity stage, the proportion of Cd accumulation in roots and stems without biochar addition increased by 29.01%, resulting in an increased Cd concentration in roots and stems by 63.29-86.80% (P < 0.05). In the different growth stages, the application of biochar reduced the contents of DTPA-extractable and exchangeable Cd in the soil by 5.11-35.14% and 9.20-54.05%, respectively, thus reducing the absorption, accumulation and concentration of Cd in all parts of the tobacco plant. In addition, the inhibitive effect of biochar on the Cd concentration in the leaves was weak at the rosette stage (22.17-53.72%) compared with the other stages (46.14-78.88%), and the degree of inhibition of biochar on the Cd concentration in the middle leaves (37.94-59.24%) was lower than that in the upper and lower leaves (49.04-73.54%) at all developmental stages. However, the long-term remediation effect of biochar on soil Cd contamination needs to be further verified, and the combination of biochar and other technologies should receive additional attention.


Subject(s)
Bioaccumulation , Cadmium/analysis , Charcoal/chemistry , Nicotiana/growth & development , Soil Pollutants/analysis , Biomass , Cadmium/metabolism , Plant Leaves/chemistry , Plant Leaves/growth & development , Plant Roots/chemistry , Plant Roots/growth & development , Soil/chemistry , Soil Pollutants/metabolism , Nicotiana/chemistry , Nicotiana/metabolism
12.
Molecules ; 23(7)2018 06 27.
Article in English | MEDLINE | ID: mdl-29954112

ABSTRACT

Magnetic porous molecularly imprinted polymers (MPMIPs) for rapid and efficient selective recognition of chlorogenic acid (CGA) were effectively prepared based on surface precipitation polymerization using CGA as template, 4-vinylpyridine (4-VP) as functional monomer, and mesoporous SiO2 (mSiO2) layer as sacrificial support. A computational simulation by evaluation of electronic binding energy is used to optimize the stoichiometric ratio between CGA and 4-VP (1:5), which reduced the duration of laboratory trials. The porous MIP shell and the rid of solid MIPs by magnet gave MPMIPs high binding capacity (42.22 mg/g) and fast kinetic binding (35 min). Adsorption behavior between CGA and MPMIPs followed Langmuir equation and pseudo-first-order reaction kinetics. Furthermore, the obtained MPMIPs as solid phase adsorbents coupled with high performance liquid chromatography (HPLC) were employed for selective extraction and determination of CGA (2.93 ± 0.11 mg/g) in Duzhong brick tea. The recoveries from 91.8% to 104.2%, and the limit of detection (LOD) at 0.8 µg/mL were obtained. The linear range (2.0⁻150.0 µg/mL) was wide with R² > 0.999. Overall, this study provided an efficient approach for fabrication of well-constructed MPMIPs for fast and selective recognition and determination of CGA from complex samples.


Subject(s)
Chlorogenic Acid/chemistry , Molecular Imprinting/methods , Polymers/chemistry , Silicon Dioxide/chemistry , Tea/chemistry , Chromatography, High Pressure Liquid
13.
J Am Chem Soc ; 135(5): 1823-9, 2013 Feb 06.
Article in English | MEDLINE | ID: mdl-23330701

ABSTRACT

Visible light photoredox catalyzed inter- and intramolecular C-H functionalization reactions of tertiary amines have been developed. Oxygen was found to act as chemical switch to trigger two different reaction pathways and to obtain two different types of products from the same starting material. In the absence of oxygen, the intermolecular addition of N,N-dimethyl-anilines to electron-deficient alkenes provided γ-amino nitriles in good to high yields. In the presence of oxygen, a radical addition/cyclization reaction occurred which resulted in the formation of tetrahydroquinoline derivatives in good yields under mild reaction conditions. The intramolecular version of the radical addition led to the unexpected formation of indole-3-carboxaldehyde derivatives. Mechanistic investigations of this reaction cascade uncovered a new photoredox catalyzed C-C bond cleavage reaction.


Subject(s)
Amines/chemical synthesis , Light , Oxygen/chemistry , Amines/chemistry , Catalysis , Cyclization , Free Radicals/chemistry , Molecular Structure , Oxidation-Reduction , Photochemical Processes
SELECTION OF CITATIONS
SEARCH DETAIL
...