Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Phenomics ; 3(5): 439-456, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37881319

ABSTRACT

The bacterial family Mycobacteriaceae includes pathogenic and nonpathogenic bacteria, and systematic research on their genome and phenome can give comprehensive perspectives for exploring their disease mechanism. In this study, the phenotypes of Mycobacteriaceae were inferred from available phenomic data, and 82 microbial phenotypic traits were recruited as data elements of the microbial phenome. This Mycobacteriaceae phenome contains five categories and 20 subcategories of polyphasic phenotypes, and three categories and eight subcategories of functional phenotypes, all of which are complementary to the existing data standards of microbial phenotypes. The phenomic data of Mycobacteriaceae strains were compiled by literature mining, third-party database integration, and bioinformatics annotation. The phenotypes were searchable and comparable from the website of the Mycobacteriaceae Phenome Atlas (MPA, https://www.biosino.org/mpa/). A topological data analysis of MPA revealed the co-evolution between Mycobacterium tuberculosis and virulence factors, and uncovered potential pathogenicity-associated phenotypes. Two hundred and sixty potential pathogen-enriched pathways were found by Fisher's exact test. The application of MPA may provide novel insights into the pathogenicity mechanism and antimicrobial targets of Mycobacteriaceae. Supplementary Information: The online version contains supplementary material available at 10.1007/s43657-023-00101-5.

2.
Microbiol Spectr ; : e0157723, 2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37668400

ABSTRACT

As an important coastal "blue carbon sink," mangrove ecosystems contain microbial communities with an as-yet-unknown high species diversity. Exploring the assemblage and structure of sediment microbial communities therein can aid in a better understanding of their ecosystem functioning, such as carbon sequestration and other biogeochemical cycles in mangrove wetlands. However, compared to other biomes, the study of mangrove sediment microbiomes is limited, especially in diverse mangrove ecosystems at a large spatial scale, which may harbor microbial communities with distinct compositions and functioning. Here, we analyzed 380 sediment samples from 13 and 8 representative mangrove ecosystems, respectively, in China and South America and compared their microbial features. Although the microbial community compositions exhibited strong distinctions, the community assemblage in the two locations followed analogous patterns: the assemblages of the entire community, abundant taxa, rare taxa, and generalists were predominantly driven by stochastic processes with significant distance-decay patterns, while the assembly of specialists was more likely related to the behaviors of other organisms in or surrounding the mangrove ecosystems. In addition, co-occurrence and topological network analysis of mangrove sediment microbiomes underlined the dominance of sulfate-reducing prokaryotes in both the regions. Moreover, we found that more than 70% of the keystone and hub taxa were sulfate-reducing prokaryotes, implying their important roles in maintaining the linkage and stability of the mangrove sediment microbial communities. This study fills a gap in the large-scale analysis of microbiome features covering distantly located and diverse mangrove ecosystems. Here, we propose a suggestion to the Mangrove Microbiome Initiative that 16S rRNA sequencing protocols should be standardized with a unified primer to facilitate the global-scale analysis of mangrove microbiomes and further comparisons with the reference data sets from other biomes.IMPORTANCEMangrove wetlands are important ecosystems possessing valuable ecological functions for carbon storage, species diversity maintenance, and coastline stabilization. These functions are greatly driven or supported by microorganisms that make essential contributions to biogeochemical cycles in mangrove ecosystems. The mechanisms governing the microbial community assembly, structure, and functions are vital to microbial ecology but remain unclear. Moreover, studying these mechanisms of mangrove microbiomes at a large spatial scale can provide a more comprehensive insight into their universal features and can help untangle microbial interaction patterns and microbiome functions. In this study, we compared the mangrove microbiomes in a large spatial range and found that the assembly patterns and key functional guilds of the Chinese and South American mangrove microbiomes were analogous. The entire communities exhibited significant distance-decay patterns and were strongly governed by stochastic processes, while the assemblage of specialists may be merely associated with the behaviors of the organisms in mangrove ecosystems. Furthermore, our results highlight the dominance of sulfate-reducing prokaryotes in mangrove microbiomes and their key roles in maintaining the stability of community structure and functions.

4.
Nucleic Acids Res ; 51(15): 8005-8019, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37283060

ABSTRACT

Broad-host-range (BHR) plasmids in human gut bacteria are of considerable interest for their ability to mediate horizontal gene transfer (HGT) across large phylogenetic distance. However, the human gut plasmids, especially the BHR plasmids, remain largely unknown. Here, we identified the plasmids in the draft genomes of gut bacterial isolates from Chinese and American donors, resulting in 5372 plasmid-like clusters (PLCs), of which, 820 PLCs (comPLCs) were estimated with > 60% completeness genomes and only 155 (18.9%) were classified to known replicon types (n = 37). We observed that 175 comPLCs had a broad host range across distinct bacterial genera, of which, 71 were detected in at least two human populations of Chinese, American, Spanish, and Danish, and 13 were highly prevalent (>10%) in at least one human population. Haplotype analyses of two widespread PLCs demonstrated their spreading and evolutionary trajectory, suggesting frequent and recent exchanges of the BHR plasmids in environments. In conclusion, we obtained a large collection of plasmid sequences in human gut bacteria and demonstrated that a subset of the BHR plasmids can be transmitted globally, thus facilitating extensive HGT (e.g. antibiotic resistance genes) events. This study highlights the potential implications of the plasmids for global human health.


Subject(s)
Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Phylogeny , Host Specificity , Plasmids/genetics , Bacteria/genetics , Gene Transfer, Horizontal/genetics
5.
Front Microbiol ; 13: 826487, 2022.
Article in English | MEDLINE | ID: mdl-35516426

ABSTRACT

Gut microbiota plays an important role in metabolic homeostasis. Previous studies demonstrated that ginsenoside Rb1 might improve obesity-induced metabolic disorders through regulating glucose and lipid metabolism in the liver and adipose tissues. Due to low bioavailability and enrichment in the intestinal tract of Rb1, we hypothesized that modulation of the gut microbiota might account for its pharmacological effects as well. Here, we show that oral administration of Rb1 significantly decreased serum LDL-c, TG, insulin, and insulin resistance index (HOMA-IR) in mice with a high-fat diet (HFD). Dynamic profiling of the gut microbiota showed that this metabolic improvement was accompanied by restoring of relative abundance of some key bacterial genera. In addition, the free fatty acids profiles in feces were significantly different between the HFD-fed mice with or without Rb1. The content of eight long-chain fatty acids (LCFAs) was significantly increased in mice with Rb1, which was positively correlated with the increase of Akkermansia and Parasuttereller, and negatively correlated with the decrease of Oscillibacter and Intestinimonas. Among these eight increased LCFAs, eicosapentaenoic acid (EPA), octadecenoic acids, and myristic acid were positively correlated with metabolic improvement. Furthermore, the colonic expression of the free fatty acid receptors 4 (Ffar4) gene was significantly upregulated after Rb1 treatment, in response to a notable increase of LCFA in feces. These findings suggested that Rb1 likely modulated the gut microbiota and intestinal free fatty acids profiles, which should be beneficial for the improvement of metabolic disorders in HFD-fed mice. This study provides a novel mechanism of Rb1 for the treatment of metabolic disorders induced by obesity, which may provide a therapeutic avenue for the development of new nutraceutical-based remedies for treating metabolic diseases, such as hyperlipidemia, insulin resistance, and type 2 diabetes.

7.
Front Pharmacol ; 13: 1068613, 2022.
Article in English | MEDLINE | ID: mdl-36733377

ABSTRACT

Dysbiosis of gut microbiota plays a fundamental role in the pathogenesis and development of chronic kidney disease (CKD) and its complications. Natural products from plants and microorganisms can achieve recognizable improvement in renal function and serve as an alternative treatment for chronic kidney disease patients with a long history, yet less is known on its beneficial effects on kidney injury by targeting the intestinal microbiota. In this review, we summarize studies on the effects of natural products from plants and microorganisms, including herbal medicines and their bioactive extracts, polysaccharides from plants and microorganisms, and phytochemicals, on the prevention and treatment of chronic kidney disease through targeting gut microflora. We describe the strategies of these anti-CKD effects in animal experiments including remodulation of gut microbiota structure, reduction of uremic toxins, enhancement of short-chain fatty acid (SCFA) production, regulation of intestinal inflammatory signaling, and improvement in intestinal integrity. Meanwhile, the clinical trials of different natural products in chronic kidney disease clinical practice were also analyzed and discussed. These provide information to enable a better understanding of the renoprotective effects of these effective natural products from plants and microorganisms in the treatment of chronic kidney disease. Finally, we propose the steps to prove the causal role of the intestinal microflora in the treatment of chronic kidney disease by natural products from plants and microorganisms. We also assess the future perspective that natural active products from plants and microorganisms can beneficially delay the onset and progression of kidney disease by targeting the gut flora and highlight the remaining challenges in this area. With the continuous deepening of studies in recent years, it has been proved that gut microbiota is a potential target of natural active products derived from plants and microorganisms for chronic kidney disease treatment. Fully understanding the functions and mechanisms of gut microbiota in these natural active products from plants and microorganisms is conducive to their application as an alternative therapeutic in the treatment of chronic kidney disease.

8.
Sci Rep ; 10(1): 10829, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616735

ABSTRACT

Naoxintong Capsule (NXT) is a Traditional Chinese Medicine formulation which has been widely applied in treating cardiovascular and cerebrovascular diseases. Previous studies also reported the potential effects of NXT against diabetes and certain complications, yet its mechanisms remain largely obscured. Herein, in this study, we investigated the anti-diabetic effects of NXT as well as its potential mechanisms. Type 2 diabetes (T2D) was induced in rats by 10-week high-fat diet in companion with a low-dose streptozotocin injection. NXT was administrated for additional 8 weeks. The results showed that NXT exerted potent efficacy against T2D by alleviating hyperglycemia and hyperlipidemia, ameliorating insulin resistance, mitigating inflammation, relieving hypertension, and reducing myocardial injuries. To investigate its mechanisms, by integrating sequencing of gut microbiota and serum untargeted metabolomics, we showed that NXT could significantly recover the disturbances of gut microbiota and metabolic phenotypes in T2D rats. Several feature pathways, such as arachidonic acid metabolism, fatty acid ß-oxidation and glycerophospholipid metabolism, were identified as the potential mechanisms of NXT in vivo. In summary, our study has comprehensively revealed the anti-diabetic effects of NXT which could be considered as a promising strategy for treating metabolic disorders, T2D and diabetic related complications in clinical practice.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/microbiology , Drugs, Chinese Herbal/administration & dosage , Gastrointestinal Microbiome/drug effects , Phytotherapy , Animals , Arachidonic Acid/metabolism , Capsules , Diabetes Mellitus, Type 2/metabolism , Drugs, Chinese Herbal/pharmacology , Fatty Acids/metabolism , Glycerophospholipids/metabolism , Hyperglycemia/drug therapy , Hyperlipidemias/drug therapy , Insulin Resistance , Male , Oxidation-Reduction/drug effects , Rats, Sprague-Dawley , Streptozocin
9.
Environ Pollut ; 265(Pt B): 114843, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32480003

ABSTRACT

In many cases, it is difficult to isolate the key microbial organisms from their communities present in natural environments. Metagenomic methods can recover near-complete genomes of the dominant microbial organisms in communities, and metatrancriptomic data could further reveal important genes and pathways related to their functions. In this study, three draft genomes of Clostridium ultunense-like bacteria were recovered based on metagenomic analyses, which is an essential syntrophic acetate-oxidizing bacteria (SAOB) member for maintaining high methane production in high-ammonium biogas digesters but difficult to isolate from its syntrophic partners. Firstly, syntrophic acetate-oxidizing bacteria in a microbial community series were enriched from a biogas digester by adding sodium acetate in the medium. Global analyses of C. ultunense suggested that it would combine the pyruvate-serine-glycine pathway and part of the Wood-Ljungdahl pathway for syntrophic acetate oxidization. Moreover, metatranscriptomic analyses showed that all of the genes of the proposed syntrophic acetate-oxidizing pathway present in the genome were actively transcribed in the microbiota. The functional bacterial enrichment and refined assembly method identify rare microbial genome in complex natural microbiota, which help to recover the syntrophic acetate-oxidizing pathway in C. ultunense strains in this study.


Subject(s)
Biofuels , Methane , Acetates , Anaerobiosis , Bacteria , Bioreactors , Oxidation-Reduction
10.
Biomed Res Int ; 2020: 8456596, 2020.
Article in English | MEDLINE | ID: mdl-32596386

ABSTRACT

Emerging evidence suggests that the gut microbiome actively regulates cognitive functions and that gut microbiome imbalance is associated with Alzheimer's disease (AD), the most prevalent neurodegenerative disorder. However, the changes in gut microbiome composition in AD and their association with disease pathology, especially in the early stages, are unclear. Here, we compared the profiles of gut microbiota between APP/PS1 transgenic mice (an AD mouse model) and their wild-type littermates at different ages by amplicon-based sequencing of 16S ribosomal RNA genes. Microbiota composition started diverging between the APP/PS1 and wild-type mice at young ages (i.e., 1-3 months), before obvious amyloid deposition and plaque-localized microglial activation in the cerebral cortex in APP/PS1 mice. At later ages (i.e., 6 and 9 months), there were distinct changes in the abundance of inflammation-related bacterial taxa including Escherichia-Shigella, Desulfovibrio, Akkermansia, and Blautia in APP/PS1 mice. These findings suggest that gut microbiota alterations precede the development of key pathological features of AD, including amyloidosis and plaque-localized neuroinflammation. Thus, the investigation of gut microbiota might provide new avenues for developing diagnostic biomarkers and therapeutic targets for AD.


Subject(s)
Alzheimer Disease , Amyloidosis , Brain Diseases , Gastrointestinal Microbiome/genetics , Microglia/pathology , Age Factors , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloidosis/genetics , Amyloidosis/pathology , Animals , Brain/pathology , Brain Diseases/genetics , Brain Diseases/pathology , Disease Models, Animal , Inflammation/pathology , Male , Mice , Mice, Transgenic
11.
Front Pharmacol ; 11: 604, 2020.
Article in English | MEDLINE | ID: mdl-32435197

ABSTRACT

Gut dysbiosis contributes to the development and progression of chronic kidney disease (CKD) and its complications. However, the effect of drugs on the gut microbiota of CKD patients and its influence on treatment outcomes remains to be explored. Here, we assessed whether the response of gut microbiota to the traditional Chinese medicine Jian-Pi-Yi-Shen (JPYS) decoction differed from that to piperazine ferulate (PF), a kidney-targeted drug, by 16S rDNA sequencing, and whether the difference could be linked with drug-specific clinical outcomes. We showed that both JPYS and PF improved renal function, but only JPYS was able to restore the blood reticulocyte counting and serum calcium level in CKD rats. We also found that weighted UniFrac beta-diversity of the gut microbiome of the JPYS treated rats was significantly different from that of PF. Microbiome markers of drug-specific response were identified and subjected to correlation network analysis, together with clinical parameters and KEGG pathways. Among the microbiome markers of CKD, Corynebacterium was found to form a network hub that was closely correlated with the JPYS responder Enterococcus, suggesting a potential indirect impact of JPYS on Corynebacterium via interspecies interactions. We also identified two network hubs of the PF responder Blautia and the JPYS-only marker Coprococcus, which were connected with many genera and clinical parameters. They might serve as keystone taxa driving the response of gut microbiota to the drugs and influence host outcomes. Moreover, the JPYS-only marker Clostridium_XIVb was found to be connected to many pathways that are associated with CKD progression and might account for the improved outcomes in the JPYS treated rats. At last, the identified keystone markers of drug response were validated by qPCR for their differential abundance between CKD and the two drugs. Taken together, our study revealed that the responses of gut microbiota to JPYS were distinct from that to PF, and pinpointed drug-specific keystone microbiome markers closely correlated to clinical parameters, which could serve as candidate microbiome targets for further studies on their roles in medicating the drug efficacy of TCM in CKD.

12.
J Biol Chem ; 295(15): 5051-5066, 2020 04 10.
Article in English | MEDLINE | ID: mdl-32111737

ABSTRACT

Nitrate is one of the major inorganic nitrogen sources for microbes. Many bacterial and archaeal lineages have the capacity to express assimilatory nitrate reductase (NAS), which catalyzes the rate-limiting reduction of nitrate to nitrite. Although a nitrate assimilatory pathway in mycobacteria has been proposed and validated physiologically and genetically, the putative NAS enzyme has yet to be identified. Here, we report the characterization of a novel NAS encoded by Mycolicibacterium smegmatis Msmeg_4206, designated NasN, which differs from the canonical NASs in its structure, electron transfer mechanism, enzymatic properties, and phylogenetic distribution. Using sequence analysis and biochemical characterization, we found that NasN is an NADPH-dependent, diflavin-containing monomeric enzyme composed of a canonical molybdopterin cofactor-binding catalytic domain and an FMN-FAD/NAD-binding, electron-receiving/transferring domain, making it unique among all previously reported hetero-oligomeric NASs. Genetic studies revealed that NasN is essential for aerobic M. smegmatis growth on nitrate as the sole nitrogen source and that the global transcriptional regulator GlnR regulates nasN expression. Moreover, unlike the NADH-dependent heterodimeric NAS enzyme, NasN efficiently supports bacterial growth under nitrate-limiting conditions, likely due to its significantly greater catalytic activity and oxygen tolerance. Results from a phylogenetic analysis suggested that the nasN gene is more recently evolved than those encoding other NASs and that its distribution is limited mainly to Actinobacteria and Proteobacteria. We observed that among mycobacterial species, most fast-growing environmental mycobacteria carry nasN, but that it is largely lacking in slow-growing pathogenic mycobacteria because of multiple independent genomic deletion events along their evolution.


Subject(s)
Coenzymes/metabolism , Flavin-Adenine Dinucleotide/metabolism , Metalloproteins/metabolism , Mycobacterium smegmatis/enzymology , NAD/metabolism , Nitrate Reductase/metabolism , Nitrates/metabolism , Pteridines/metabolism , Electrons , Gene Expression Regulation, Bacterial , Molybdenum Cofactors , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Nitrate Reductase/chemistry , Nitrate Reductase/genetics , Nitrites/metabolism , Phylogeny , Receptors, Neurotransmitter/metabolism
13.
Genome Biol ; 20(1): 293, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31870407

ABSTRACT

Untangling the complex variations of microbiome associated with large-scale host phenotypes or environment types challenges the currently available analytic methods. Here, we present tmap, an integrative framework based on topological data analysis for population-scale microbiome stratification and association studies. The performance of tmap in detecting nonlinear patterns is validated by different scenarios of simulation, which clearly demonstrate its superiority over the most commonly used methods. Application of tmap to several population-scale microbiomes extensively demonstrates its strength in revealing microbiome-associated host or environmental features and in understanding the systematic interrelations among their association patterns. tmap is available at https://github.com/GPZ-Bioinfo/tmap.


Subject(s)
Microbiota , Software , Data Mining , Humans
14.
Front Microbiol ; 10: 10, 2019.
Article in English | MEDLINE | ID: mdl-30728810

ABSTRACT

Group B Streptococcus (GBS; Streptococcus agalactiae) is a leading cause of sepsis in neonates and pregnant mothers worldwide. Whereas the hyper-virulent serogroup III clonal cluster 17 has been associated with neonatal disease and meningitis, serogroup III ST283 was recently implicated in invasive disease among non-pregnant adults in Asia. Here, through comparative genome analyses of invasive and non-invasive ST283 strains, we identified a truncated DNA-binding regulator of a two-component system in a non-invasive strain that was homologous to Bacillus subtilis bceR, encoding the bceRSAB response regulator, which was conserved among GBS strains. Using isogenic knockout and complementation mutants of the ST283 strain, we demonstrated that resistance to bacitracin and the human antimicrobial peptide cathelicidin LL-37 was reduced in the ΔbceR strain with MICs changing from 64 and 256 µg/ml to 0.25 and 64 µg/ml, respectively. Further, the ATP-binding cassette transporter was upregulated by sub-inhibitory concentrations of bacitracin in the wild-type strain. Upregulation of dltA in the wild-type strain was also observed and thought to explain the increased resistance to antimicrobial peptides. DltA, an enzyme involved in D-alanylation during the synthesis of wall teichoic acids, which mediates reduced antimicrobial susceptibility, was previously shown to be regulated by the bceR-type regulator in Staphylococcus aureus. In a murine infection model, we found that the ΔbceR mutation significantly reduced the mortality rate compared to that with the wild-type strain (p < 0.01). Moreover, this mutant was more susceptible to oxidative stress compared to the wild-type strain (p < 0.001) and was associated with reduced biofilm formation (p < 0.0001). Based on 2-DGE and mass spectrometry, we showed that downregulation of alkyl hydroperoxide reductase (AhpC), a Gls24 family stress protein, and alcohol dehydrogenase (Adh) in the ΔbceR strain might explain the attenuated virulence and compromised stress response. Together, we showed for the first time that the bceR regulator in GBS plays an important role in bacitracin and antimicrobial peptide resistance, virulence, survival under oxidative stress, and biofilm formation.

15.
ISME J ; 13(1): 104-117, 2019 01.
Article in English | MEDLINE | ID: mdl-30116044

ABSTRACT

Plant cell-wall polysaccharides constitute the most abundant but recalcitrant organic carbon source in nature. Microbes residing in the digestive tract of herbivorous bilaterians are particularly efficient at depolymerizing polysaccharides into fermentable sugars and play a significant support role towards their host's lifestyle. Here, we combine large-scale functional screening of fosmid libraries, shotgun sequencing, and biochemical assays to interrogate the gut microbiota of the wood-feeding "higher" termite Globitermes brachycerastes. A number of putative polysaccharide utilization gene clusters were identified with multiple fibrolytic genes. Our large-scale functional screening of 50,000 fosmid clones resulted in 464 clones demonstrating plant polysaccharide-degrading activities, including 267 endoglucanase-, 24 exoglucanase-, 72 ß-glucosidase-, and 101 endoxylanase-positive clones. We sequenced 173 functionally active clones and identified ~219 genes encoding putative carbohydrate-active enzymes (CAZymes) targeting cellulose, hemicellulose and pectin. Further analyses revealed that 68 of 154 contigs encode one or more CAZyme, which includes 35 examples of putative saccharolytic operons, suggesting that clustering of CAZymes is common in termite gut microbial inhabitants. Biochemical characterization of a representative xylanase cluster demonstrated that constituent enzymes exhibited complementary physicochemical properties and saccharolytic capabilities. Furthermore, diverse cellobiose-metabolizing enzymes include ß-glucosidases, cellobiose phosphorylases, and phopho-6-ß-glucosidases were identified and functionally verified, indicating that the termite gut micro-ecosystem utilizes diverse metabolic pathways to interconnect hydrolysis and central metabolism. Collectively, these results provide an in-depth view of the adaptation and digestive strategies employed by gut microbiota within this tiny-yet-efficient host-associated ecosystem.


Subject(s)
Cellobiose/metabolism , Cellulose/metabolism , Gastrointestinal Microbiome/physiology , Isoptera/microbiology , Animals , Carbohydrate Metabolism , Enzymes/genetics , Enzymes/metabolism , Gastrointestinal Tract/microbiology , Gene Expression Regulation, Enzymologic , Metagenomics , Multigene Family , Polysaccharides/metabolism , Wood/metabolism
16.
Gastroenterology ; 155(2): 529-541.e5, 2018 08.
Article in English | MEDLINE | ID: mdl-29689266

ABSTRACT

BACKGROUND & AIMS: Patients with colorectal cancer (CRC) have a different gut microbiome signature than individuals without CRC. Little is known about the viral component of CRC-associated microbiome. We aimed to identify and validate viral taxonomic markers of CRC that might be used in detection of the disease or predicting outcome. METHODS: We performed shotgun metagenomic analyses of viromes of fecal samples from 74 patients with CRC (cases) and 92 individuals without CRC (controls) in Hong Kong (discovery cohort). Viral sequences were classified by taxonomic alignment against an integrated microbial reference genome database. Viral markers associated with CRC were validated using fecal samples from 3 separate cohorts: 111 patients with CRC and 112 controls in Hong Kong, 46 patients with CRC and 63 controls in Austria, and 91 patients with CRC and 66 controls in France and Germany. Using abundance profiles of CRC-associated virome genera, we constructed random survival forest models to identify those associated with patient survival times. RESULTS: The diversity of the gut bacteriophage community was significantly increased in patients with CRC compared with controls. Twenty-two viral taxa discriminated cases from controls with an area under the receiver operating characteristic curve of 0.802 in the discovery cohort. The viral markers were validated in 3 cohorts, with area under the receiver operating characteristic curves of 0.763, 0.736, and 0.715, respectively. Clinical subgroup analysis showed that dysbiosis of the gut virome was associated with early- and late-stage CRC. A combination of 4 taxonomic markers associated with reduced survival of patients with CRC (log-rank test, P = 8.1 × 10-6) independently of tumor stage, lymph node metastases, or clinical parameters. We found altered interactions between bacteriophages and oral bacterial commensals in fecal samples from patients with CRC compared with controls. CONCLUSIONS: In a metagenomic analysis of fecal samples from patients and controls, we identified virome signatures associated with CRC. These data might be used to develop tools to identify individuals with CRC or predict outcomes.


Subject(s)
Biomarkers, Tumor/analysis , Colorectal Neoplasms/virology , Dysbiosis/virology , Gastrointestinal Microbiome/genetics , Viruses/genetics , Austria/epidemiology , Case-Control Studies , Cohort Studies , Colonoscopy , Colorectal Neoplasms/diagnostic imaging , Colorectal Neoplasms/mortality , Colorectal Neoplasms/pathology , Cross-Sectional Studies , Dysbiosis/diagnostic imaging , Feces/virology , Female , France/epidemiology , Germany/epidemiology , Hong Kong/epidemiology , Humans , Male , Metagenomics , Middle Aged , Sensitivity and Specificity , Survival Analysis
17.
Synth Syst Biotechnol ; 1(3): 169-186, 2016 Sep.
Article in English | MEDLINE | ID: mdl-29062941

ABSTRACT

The complete genome of methanol-utilizing Amycolatopsis methanolica strain 239T was generated, revealing a single 7,237,391 nucleotide circular chromosome with 7074 annotated protein-coding sequences (CDSs). Comparative analyses against the complete genome sequences of Amycolatopsis japonica strain MG417-CF17T, Amycolatopsis mediterranei strain U32 and Amycolatopsis orientalis strain HCCB10007 revealed a broad spectrum of genomic structures, including various genome sizes, core/quasi-core/non-core configurations and different kinds of episomes. Although polyketide synthase gene clusters were absent from the A. methanolica genome, 12 gene clusters related to the biosynthesis of other specialized (secondary) metabolites were identified. Complete pathways attributable to the facultative methylotrophic physiology of A. methanolica strain 239T, including both the mdo/mscR encoded methanol oxidation and the hps/hpi encoded formaldehyde assimilation via the ribulose monophosphate cycle, were identified together with evidence that the latter might be the result of horizontal gene transfer. Phylogenetic analyses based on 16S rDNA or orthologues of AMETH_3452, a novel actinobacterial class-specific conserved gene against 62 or 18 Amycolatopsis type strains, respectively, revealed three major phyletic lineages, namely the mesophilic or moderately thermophilic A. orientalis subclade (AOS), the mesophilic Amycolatopsis taiwanensis subclade (ATS) and the thermophilic A. methanolica subclade (AMS). The distinct growth temperatures of members of the subclades correlated with corresponding genetic variations in their encoded compatible solutes. This study shows the value of integrating conventional taxonomic with whole genome sequence data.

18.
Nat Commun ; 6: 8727, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26515465

ABSTRACT

Gut microbial dysbiosis contributes to the development of colorectal cancer (CRC). Here we catalogue the microbial communities in human gut mucosae at different stages of colorectal tumorigenesis. We analyse the gut mucosal microbiome of 47 paired samples of adenoma and adenoma-adjacent mucosae, 52 paired samples of carcinoma and carcinoma-adjacent mucosae and 61 healthy controls. Probabilistic partitioning of relative abundance profiles reveals that a metacommunity predominated by members of the oral microbiome is primarily associated with CRC. Analysis of paired samples shows differences in community configurations between lesions and the adjacent mucosae. Correlations of bacterial taxa indicate early signs of dysbiosis in adenoma, and co-exclusive relationships are subsequently more common in cancer. We validate these alterations in CRC-associated microbiome by comparison with two previously published data sets. Our results suggest that a taxonomically defined microbial consortium is implicated in the development of CRC.


Subject(s)
Bacteria/isolation & purification , Colorectal Neoplasms/microbiology , Gastrointestinal Microbiome , Aged , Bacteria/classification , Bacteria/genetics , Biodiversity , Carcinogenesis , Case-Control Studies , Colorectal Neoplasms/pathology , Dysbiosis/microbiology , Female , Humans , Male , Middle Aged
19.
PLoS One ; 10(6): e0129921, 2015.
Article in English | MEDLINE | ID: mdl-26070087

ABSTRACT

Diverse cellulolytic bacteria are essential for maintaining high lignocellulose degradation ability in biogas digesters. However, little was known about functional genes and gene clusters of dominant cellulolytic bacteria in biogas digesters. This is the foundation to understand lignocellulose degradation mechanisms of biogas digesters and apply these gene resource for optimizing biofuel production. A combination of metagenomic and 16S rRNA gene clone library methods was used to investigate the dominant cellulolytic bacteria and their glycoside hydrolase (GH) genes in two biogas digesters. The 16S rRNA gene analysis revealed that the dominant cellulolytic bacteria were strains closely related to Clostridium straminisolvens and an uncultured cellulolytic bacterium designated BG-1. To recover GH genes from cellulolytic bacteria in general, and BG-1 in particular, a refined assembly approach developed in this study was used to assemble GH genes from metagenomic reads; 163 GH-containing contigs ≥ 1 kb in length were obtained. Six recovered GH5 genes that were expressed in E. coli demonstrated multiple lignocellulase activities and one had high mannanase activity (1255 U/mg). Eleven fosmid clones harboring the recovered GH-containing contigs were sequenced and assembled into 10 fosmid contigs. The composition of GH genes in the 163 assembled metagenomic contigs and 10 fosmid contigs indicated that diverse GHs and lignocellulose degradation mechanisms were present in the biogas digesters. In particular, a small portion of BG-1 genome information was recovered by PhyloPythiaS analysis. The lignocellulase gene clusters in BG-1 suggested that it might use a possible novel lignocellulose degradation mechanism to efficiently degrade lignocellulose. Dominant cellulolytic bacteria of biogas digester possess diverse GH genes, not only in sequences but also in their functions, which may be applied for production of biofuel in the future.


Subject(s)
Bacteria/genetics , Bacteria/metabolism , Biofuels/microbiology , Biotransformation , Glycoside Hydrolases/genetics , Bacteria/classification , Biodiversity , Computational Biology , Gene Expression , Genomics , Glycoside Hydrolases/metabolism , Lignin/metabolism , Metagenomics , Multigene Family , Phylogeny , RNA, Ribosomal, 16S/genetics
20.
Genome Announc ; 3(3)2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26067956

ABSTRACT

We report here the draft genomes of two pneumococcal isolates in Hong Kong, CU_SPNE1_05 and CU_SPNE32_06. Strain CU_SPNE1_05 had a cefotaxime MIC of 1 µg/ml, and CU_SPNE32_06 had an MIC of 32 µg/ml. Both strains belong to the multidrug-resistant serogroup 19, sequence type 271 (clonal complex 3200/271).

SELECTION OF CITATIONS
SEARCH DETAIL
...