Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
ACS Appl Mater Interfaces ; 14(50): 55700-55708, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36509714

ABSTRACT

Lithium metal is the most promising anode for lithium batteries, but the growth of lithium dendrites leads to rapid attenuation of battery capacity and a series of safety problems during the plating/stripping process. Utilization of carbon materials for improving the Li metal anode stability represents a feasible strategy; particularly, the high affinity for lithium endows graphdiyne (GDY) with a promising capability for stabilizing Li metal anodes. Herein, vertically aligned GDY nanowalls (NWs) were uniformly grown on a copper foil, which allowed for dendrite-free, columnar deposition of lithium, desired for a stable Li metal anode. The highly lithiophilic GDY NWs afforded plentiful and evenly distributed active sites for Li nucleation as well as uniform distribution of Li-ion flux for Li growth, resulting in smooth, columnar Li deposition. The resultant Li metal electrode based on the Cu-GDY NWs was able to cycle stably for 500 cycles at 1 mA cm-2 and 2 mA h cm-2 with a high Coulombic efficiency of 99.2% maintained. A symmetric battery assembled by lithium-loaded Cu-GDY NWs (Cu-GDY NWs@Li) showed a long lifespan over 1000 h at 1 mA cm-2 and 1 mA h cm-2. Furthermore, a full cell assembled by Cu-GDY NWs@Li and LiFePO4 was able to cycle stably for 200 cycles at a high current of 5 C, indicating the potential applications in practical Li metal batteries at high rates. This work demonstrated great potential of GDY-based materials toward applications in Li metal batteries of high safety and high energy density.

2.
Adv Sci (Weinh) ; : e2205233, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36442851

ABSTRACT

Li metal batteries (LMBs) have attracted widespread attention in recent years because of their high energy densities. But traditional LMBs using liquid electrolyte have potential safety hazards, such as: leakage and flammability. Replacing liquid electrolyte with solid polymer electrolyte (SPE) can not only significantly improve the safety, but also improve the energy density of LMBs. However, till now, there is only limited success in improving the various physical and chemical properties of SPE, especially in thickness, posing great obstacles to further promoting its fundamental and applied studies. In this review, the authors mainly focus on evaluating the merits of ultrathin SPE and summarizing its existing challenges as well as fundamental requirements for designing and manufacturing advanced ultrathin SPE in the future. Meanwhile, the authors outline existing cases related to this field as much as possible and summarize them from the perspective of synthetic chemistry, hoping to provide a comprehensive understanding and serve as a strategic guidance for designing and fabricating high-performance ultrathin SPE. Challenges and opportunities regarding this burgeoning field are also critically evaluated at the end of this review.

3.
ACS Appl Mater Interfaces ; 14(24): 27873-27881, 2022 Jun 22.
Article in English | MEDLINE | ID: mdl-35671243

ABSTRACT

The rational electrolyte design with weak solvation is regarded as an effective way to regulate the electrolyte/electrode interface (SEI) that profoundly affects the performance of Li-metal batteries. Herein, we propose a newly developed siloxane-based weakly solvating electrolyte (SiBE) with contact ion pairs (CIPs) or aggregates (AGGs) dominating the solution structure, which enables the dendrite-free Li deposition and long cycle stability of Li-metal batteries. By altering the combination of Li salts, the SiBE leads to the formation of an inorganic anion-derived solid electrolyte interphase, which is highly stable and Li+-conductive. Based on SiBE, the Li||LiFePO4 (LFP) full cell can stably cycle for 1000 cycles at a 2C rate with a capacity retention of 76.9%. Even with a limited Li-metal anode, it can maintain a capacity retention of 80% after 110 cycles with a high average Coulombic efficiency of 99.8%. This work reveals that siloxane can be a promising solvent to obtain weakly solvating electrolytes, which opens a new avenue for SEI composition regulation of Li-metal batteries.

4.
ACS Appl Mater Interfaces ; 13(41): 48569-48581, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34636230

ABSTRACT

Porphyrins and their derivatives are a unique class of multifunctional and modifiable π-conjugated heterocyclic organic molecules, which have been widely applied in the fields of optoelectronic devices and catalysis. However, the application of porphyrins in polymer electrolytes for all-solid-state lithium-ion batteries (ASSLIBs) has rarely been reported. Herein, porphyrin molecules modified by polyether chains are used for composite solid-state polymer electrolytes (CSPEs) for the first time. The introduction of a modified porphyrin in an electrolyte can not only promote the electrochemical properties by constructing ordered ion channels via the intermolecular interaction between π-conjugated heterocyclic porphyrins, but also significantly improve the mechanical strength and interface contact between the electrolyte membrane and the lithium metal anode. Consequently, the all-solid-state batteries assembled by the modified porphyrin composite polymer electrolyte, LiFePO4 cathodes, and Li anodes deliver a higher discharge capacity of 158.2 mA h g-1 at 60 °C, 0.2 C, which remains at 153.6 mA h g-1 after 120 cycles with an average coulombic efficiency of ∼99.60%. Furthermore, the flexible porphyrin-based composite polymer electrolyte can also enable a Li || LiCoO2 battery to exhibit a maximum discharge capacity of 108.6 mA h g-1 at 60 °C, 0.1 C with an active material loading of 2-3 mg cm-2, which is unable to realize for the corresponding batteries with a pure PEO-based polymer electrolyte. This work not only broadens the application scope of porphyrins, but also proposes a novel method to fabricate CSPEs with improved electrochemical and mechanical properties, which may shed new light on the development of CSPEs for next-generation high-energy-density lithium-ion batteries.

5.
Nanotechnology ; 32(48)2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34416745

ABSTRACT

Fabricating sulfur host for the cathode with strong confinement effect and high dispersion of sulfur is vitally important to the development of high-performance lithium sulfur batteries. Benefiting from their unique and tunable structure, good conductivity and chemical inertness, hollow porous carbon materials has been considered as a promising candidate. Herein, precisely designed waxberry-like hierarchical hollow carbon spheres (h-CNS) have been synthesized as the sulfur micro-containers for lithium sulfur batteries. The prepared h-CNS/S electrode shows a good rate capability of 1311 mAh g-1at 0.1 C and 962 mAh g-1at 1 C. In addition, the h-CNS/S electrode also shows satisfactory long cycle performance with 622 mAh g-1at 0.5 C and 400 mAh g-1at 4 C over 600 cycles. The desirable performance can be attributed to the wedge-shape micro-containers which improve the high dispersion of sulfur inside the channels and inhibit the loss of intermediate polysulfide. Moreover, the unique structure can also enhance the transfer of both lithium ions and electrons which benefits to the rate capability of the lithium sulfur batteries.

6.
Adv Mater ; 32(37): e2001259, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32734684

ABSTRACT

Lithium-metal batteries (LMBs) with high energy densities are highly desirable for energy storage, but generally suffer from dendrite growth and side reactions in liquid electrolytes; thus the need for solid electrolytes with high mechanical strength, ionic conductivity, and compatible interface arises. Herein, a thiol-branched solid polymer electrolyte (SPE) is introduced featuring high Li+ conductivity (2.26 × 10-4 S cm-1 at room temperature) and good mechanical strength (9.4 MPa)/toughness (≈500%), thus unblocking the tradeoff between ionic conductivity and mechanical robustness in polymer electrolytes. The SPE (denoted as M-S-PEGDA) is fabricated by covalently cross-linking metal-organic frameworks (MOFs), tetrakis (3-mercaptopropionic acid) pentaerythritol (PETMP), and poly(ethylene glycol) diacrylate (PEGDA) via multiple CSC bonds. The SPE also exhibits a high electrochemical window (>5.4 V), low interfacial impedance (<550 Ω), and impressive Li+ transference number (tLi+ = 0.44). As a result, Li||Li symmetrical cells with the thiol-branched SPE displayed a high stability in a >1300 h cycling test. Moreover, a Li|M-S-PEGDA|LiFePO4 full cell demonstrates discharge capacity of 143.7 mAh g-1 and maintains 85.6% after 500 cycles at 0.5 C, displaying one of the most outstanding performances for SPEs to date.

7.
Nanoscale ; 12(25): 13731-13741, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32573574

ABSTRACT

Stabilizing metastable colloids such as gallium-based liquid metal nanoparticles (LM NPs) and using them in complex machining processes is a great challenge due to their simple and sensitive surface chemistry against ligand modification and solution processing. Water, a green solvent, is unfortunately not favored by LM NPs in the entire workflow from synthesis to functionalization and application. This dilemma is relieved herein by presenting a sonochemical polymer deposition technique that can produce a water-dispersible LM@polymer hybrid nanomaterial in one step. Water-soluble polymers such as poly(vinyl pyrrolidone) (PVP) can be directly deposited onto eutectic gallium indium (EGaIn) as a coating shell (up to 20 nm) and prevent their rapid and continuous oxidation in aqueous solutions. EGaIn@PVP NPs are stable after preservation for 30 days in water and 60 days in ethanol, and the polymer coating shows solvent-responsive swelling/shrinking behaviors. The LM@polymer NPs can be stably composited with other materials through complex processing and perform desired functions after composition. For demonstration, EGaIn@PVP NPs are employed as active electrode materials for lithium-ion batteries by compositing with water-soluble binders, and exhibit excellent cycling performances with no obvious decay (capacity retention >95%) in more than 700 cycles at 4 A g-1. This strategy enriches the toolbox for surface engineering of LMs especially under harsh conditions, which can benefit the applications of LM NPs in various scenarios.

8.
Chem Commun (Camb) ; 56(52): 7195-7198, 2020 Jul 04.
Article in English | MEDLINE | ID: mdl-32467959

ABSTRACT

We propose an asymmetric quasi-solid electrolyte to regulate Li deposition and avoid Li dendrite formation. The thiourea in the electrolyte can absorb on the Li surface to induce Li deposition, change the propagative growth behavior of Li metal and eliminate dendritic formation, thereby ensuring excellent cycling stability and high specific capacity.

9.
Adv Mater ; 31(41): e1903248, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31463989

ABSTRACT

Uncontrollable Li dendrite growth and low Coulombic efficiency severely hinder the application of lithium metal batteries. Although a lot of approaches have been developed to control Li deposition, most of them are based on inhibiting lithium deposition on protrusions, which can suppress Li dendrite growth at low current density, but is inefficient for practical battery applications, with high current density and large area capacity. Here, a novel leveling mechanism based on accelerating Li growth in concave fashion is proposed, which enables uniform and dendrite-free Li plating by simply adding thiourea into the electrolyte. The small thiourea molecules can be absorbed on the Li metal surface and promote Li growth with a superfilling effect. With 0.02 m thiourea added in the electrolyte, Li | Li symmetrical cells can be cycled over 1000 cycles at 5.0 mA cm-2 , and a full cell with LiFePO4 | Li configuration can even maintain 90% capacity after 650 cycles at 5.0 C. The superfilling effect is also verified by computational chemistry and numerical simulation, and can be expanded to a series of small chemicals using as electrolyte additives. It offers a new avenue to dendrite-free lithium deposition and may also be expanded to other battery chemistries.

10.
Chemistry ; 25(52): 12052-12057, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31269307

ABSTRACT

The performance and safety of lithium (Li) metal batteries can be compromised owing to the formation of Li dendrites. Here, the use of a polymer of intrinsic microporosity (PIM) is reported as a feasible and robust interfacial layer that inhibits dendrite growth. The PIM demonstrates excellent film-forming ability, electrochemical stability, strong adhesion to a copper metal electrode, and outstanding mechanical flexibility so that it relieves the stress of structural changes produced by reversible lithiation. Importantly, the porous structure of the PIM, which guides Li flux to obtain uniform deposition, and its strong mechanical strength combine to suppress dendrite growth. Hence, the electrochemical performance of the anode is significantly enhanced, promising excellent performance and extended cycle lifetime for Li metal batteries.

11.
ACS Appl Mater Interfaces ; 11(23): 20895-20904, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31117464

ABSTRACT

All-solid-state lithium metal batteries (ASSLiMB) have been considered as one of the most promising next-generation high-energy storage systems that replace liquid organic electrolytes by solid-state electrolytes (SSE). Among many different types of SSE, NASICON-structured Li1+ xAl xGe2- x(PO3)4 (LAGP) shows high a ionic conductivity, high stability against moisture, and wide working electrochemical windows. However, it is unstable when it is in contact with molten Li, hence largely limiting its applications in ASSLiMB. To solve this issue, we have studied reaction processes and mechanisms between LAGP and molten Li, based on which a failure mechanism is hence proposed. With better understanding the failure mechanism, a thin thermosetting Li salt polymer, P(AA- co-MA)Li, layer is coated on the bare LAGP pellet before contacting with molten Li. To further increase the ionic conductivity of P(AA- co-MA)Li, LiCl is added in P(AA- co-MA)Li. A symmetric cell of Li/interface/LAGP/interface/Li is prepared using molten Li-Sn alloy and galvanically cycled at current densities of 15, 30, and 70 µA cm-2 for 100 cycles, showing stable low overpotentials of 0.036, 0.105, and 0.257 V, respectively. These electrochemical results demonstrate that the interface coating of P(AA- co-MA)Li can be an effective method to avoid an interfacial reaction between the LAGP electrolyte and molten Li.

12.
ACS Appl Mater Interfaces ; 10(30): 25273-25284, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29975039

ABSTRACT

All-solid-state polymer electrolytes (SPEs) have aroused great interests as one of the most promising alternatives for liquid electrolyte in the next-generation high-safety, and flexible lithium-ion batteries. However, some disadvantages of SPEs such as inefficient ion transmission capacity and poor interface stability result in unsatisfactory cyclic performance of the assembled batteries. Especially, the solid cell is hard to be run at room temperature. Herein, a novel and flexible discotic liquid-crystal (DLC)-based cross-linked solid polymer electrolyte (DLCCSPE) with controlled ion-conducting channels is fabricated via a one-pot photopolymerization of oriented reactive discogen, poly(ethylene glycol)diacrylate, and lithium salt. The experimental results indicate that the macroscopic alignment of self-assembled columns in the DLCCSPEs is successfully obtained under annealing and effectively immobilized via the UV photopolymerization. Because of the existence of unique oriented structure in the electrolytes, the prepared DLCCSPE films exhibit higher ionic conductivities and better comprehensive electrochemical properties than the DLCCSPEs without controlled ion-conductive pathways. Especially, the assembled LiFePO4/Li cells with oriented electrolyte show an initial discharge capacity of 164 mA h g-1 at 0.1 C and average specific discharge capacities of 143, 135, and 149 mA h g-1 at the C-rates of 0.5, 1, and 0.2 C, respectively. In addition, the solid cell also shows the first discharge capacity of 124 mA h g-1 (0.2 C) at room temperature. The outstanding cell performance of the oriented DLCCSPE should be originated from the macroscopically oriented and self-assembled DLC, which can form ion-conducting channels. Thus, combining the excellent performance of DLCCSPE and the simple one-pot fabricating process of the DLC-based all-solid-state electrolyte, it is believed that the DLC-based electrolyte can be one of the most promising electrolyte materials for the next-generation high-safety solid lithium-ion batteries.

13.
Talanta ; 179: 822-827, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29310313

ABSTRACT

Magnetic impurities of lithium ion battery degrade both the capacity and cycling rates, even jeopardize the safety of the battery. During the material manufacture of LiFePO4, two opposite and extreme cases (trace impurity Fe(II) with high content of Fe(III) background in FePO4 of initial end and trace Fe(III) with high content of Fe(II) background in LiFePO4 of terminal end) can result in the generation of magnetic impurities. Accurate determination of impurities and precise evaluation of raw material or product are necessary to ensure reliability, efficiency and economy in lithium ion battery manufacture. Herein, two kinds of rapid, simple, and sensitive capillary electrophoresis (CE) methods are proposed for quality monitoring of initial and terminal manufacture of LiFePO4 based lithium ion batteries. The key to success includes the smart use of three common agents 1,10-phenanthroline (phen), EDTA and cetyltrimethyl ammonium bromide (CTAB) in sample solution or background electrolyte (BGE), as well as sample stacking technique of CE feature. Owing to the combination of field-enhanced sample injection (FESI) technique with high stacking efficiency, detection limits of 2.5nM for Fe(II) and 0.1µM for Fe(III) were obtained corresponding to high content of Fe(III) and Fe(II), respectively. The good recoveries and reliability demonstrate that the developed methods are accurate approaches for quality monitoring of LiFePO4 manufacture.

14.
Adv Mater ; 30(3)2018 Jan.
Article in English | MEDLINE | ID: mdl-29205533

ABSTRACT

The lithium storage capacity of graphite can be significantly promoted by rare earth trihydrides (REH3 , RE = Y, La, and Gd) through a synergetic mechanism. High reversible capacity of 720 mA h g-1 after 250 cycles is achieved in YH3 -graphite nanocomposite, far exceeding the total contribution from the individual components and the effect of ball milling. Comparative study on LaH3 -graphite and GdH3 -graphite composites suggests that the enhancement factor is 3.1-3.4 Li per active H in REH3 , almost independent of the RE metal, which is evident of a hydrogen-enhanced lithium storage mechanism. Theoretical calculation suggests that the active H from REH3 can enhance the Li+ binding to the graphene layer by introducing negatively charged sites, leading to energetically favorable lithiation up to a composition Li5 C16 H instead of LiC6 for conventional graphite anode.

15.
ACS Appl Mater Interfaces ; 9(11): 9620-9629, 2017 Mar 22.
Article in English | MEDLINE | ID: mdl-28248075

ABSTRACT

The rational design and controllable fabrication of electrode materials with tailored structures and superior performance is highly desirable for the next-generation lithium ion batteries (LIBs). In this work, a novel three-dimensional (3D) graphite foam (GF)@SnO2 nanorod arrays (NRAs)@polyaniline (PANI) hybrid architecture was constructed via solvothermal growth followed by electrochemical deposition. Aligned SnO2 NRAs were uniformly grown on the surface of GF, and a PANI shell with a thickness of ∼40 nm was coated on individual SnO2 nanorods, forming a SnO2@PANI core-shell structure. Benefiting from the synergetic effect of 3D GF with large surface area and high conductivity, SnO2 NRAs offering direct pathways for electrons and lithium ions, and the conductive PANI shell that accommodates the large volume variation of SnO2, the binder-free, integrated GF@SnO2 NRAs@PANI electrode for LIBs exhibited high capacity, excellent rate capability, and good electrochemical stability. A high discharge capacity of 540 mAh g-1 (calculated by the total mass of the electrode) was achieved after 50 cycles at a current density of 500 mA g-1. Moreover, the electrode demonstrated superior rate performance with a discharge capacity of 414 mAh g-1 at a high rate of 3 A g-1.

16.
Proc Natl Acad Sci U S A ; 114(14): 3578-3583, 2017 04 04.
Article in English | MEDLINE | ID: mdl-28320950

ABSTRACT

Lithium-sulfur batteries (Li-S batteries) have attracted intense interest because of their high specific capacity and low cost, although they are still hindered by severe capacity loss upon cycling caused by the soluble lithium polysulfide intermediates. Although many structure innovations at the material and device levels have been explored for the ultimate goal of realizing long cycle life of Li-S batteries, it remains a major challenge to achieve stable cycling while avoiding energy and power density compromises caused by the introduction of significant dead weight/volume and increased electrochemical resistance. Here we introduce an ultrathin composite film consisting of naphthalimide-functionalized poly(amidoamine) dendrimers and graphene oxide nanosheets as a cycling stabilizer. Combining the dendrimer structure that can confine polysulfide intermediates chemically and physically together with the graphene oxide that renders the film robust and thin (<1% of the thickness of the active sulfur layer), the composite film is designed to enable stable cycling of sulfur cathodes without compromising the energy and power densities. Our sulfur electrodes coated with the composite film exhibit very good cycling stability, together with high sulfur content, large areal capacity, and improved power rate.

17.
Angew Chem Int Ed Engl ; 55(47): 14818-14822, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27779359

ABSTRACT

Confining lithium polysulfide intermediates is one of the most effective ways to alleviate the capacity fade of sulfur-cathode materials in lithium-sulfur (Li-S) batteries. To develop long-cycle Li-S batteries, there is an urgent need for material structures with effective polysulfide binding capability and well-defined surface sites; thereby improving cycling stability and allowing study of molecular-level interactions. This challenge was addressed by introducing an organometallic molecular compound, ferrocene, as a new polysulfide-confining agent. With ferrocene molecules covalently anchored on graphene oxide, sulfur electrode materials with capacity decay as low as 0.014 % per cycle were realized, among the best of cycling stabilities reported to date. With combined spectroscopic studies and theoretical calculations, it was determined that effective polysulfide binding originates from favorable cation-π interactions between Li+ of lithium polysulfides and the negatively charged cyclopentadienyl ligands of ferrocene.

18.
ACS Appl Mater Interfaces ; 8(27): 17245-52, 2016 Jul 13.
Article in English | MEDLINE | ID: mdl-27311737

ABSTRACT

An in situ simple and effective synthesis method is effectively exploited to construct MOF-derived grape-like architecture anchoring on nitrogen-doped graphene, in which ultrafine Fe3O4 nanoparticles are uniformly dispersed (Fe3O4@C/NG). In this hybrid hierarchical structure, new synergistic features are accessed. The graphene oxide plane with functional groups is expected to alleviate the aggregation problem in the MOFs' growth. Moreover, the morphology and size of iron-based MOFs and carbon content are conveniently controlled by controlling the solution concentration of precursor. Through making use of in situ carbonization of the organic ligands in MOFs, Fe3O4 subunits are effectively protected by 3D interconnected conductive carbon at microscale. Consequently, when applied as anode materials, even as high as 10 A g(-1) after 1000 cycles, Fe3O4@C/NG still maintains as high as 458 mA h g(-1).

19.
Chem Commun (Camb) ; 51(91): 16381-16384, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26411898

ABSTRACT

A novel organic solvent-assisted freeze-drying pathway, which can effectively protect and uniformly distribute active particles, is developed to fabricate a free-standing Li2MnO3·LiNi1/3Co1/3Mn1/3O2 (LR)/rGO electrode on a large scale. Thus, very high energy density and power density are realized for LR materials with robust long-term cyclability.

20.
Nanoscale ; 7(17): 7841-7848, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25853984

ABSTRACT

A one step in situ synthesis approach is developed to construct 3D nitrogen-doped reduced graphene oxides, in which olive-like multi-component metal oxides are homogeneously dispersed. The novel hybrid nanoarchitecture shows some particular properties derived from synergistic effects. The size of Fe/Co/O oxides is reduced and better controlled compared to that of individual oxides due to mutual dispersant interactions. Furthermore, the positive synergistic interaction between heterogeneous oxides and graphene nanosheets has effective control on the particle size and dispersion of nanoparticles. Taking advantage of the flexibility and the cohesiveness of graphene nanosheets, the obtained composite can be directly processed into a binder-free electrode through a unique time-saving "squeezing" process. The obtained electrode possesses a reprocessable feature, which provides possibilities for convenient storage and quick fabrication at any time and presents attractive electrochemical performance of robust long-term capability retention (562 mA h g(-1) after 300 cycles at 10 A g(-1)) and superior rate performances (1162 mA h g(-1) at 0.5 A g(-1), 737 mA h g(-1) at 5 A g(-1), and 585 mA h g(-1) at 10 A g(-1)).

SELECTION OF CITATIONS
SEARCH DETAIL
...