Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(8): e29837, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38681536

ABSTRACT

Unmanned aerial vehicle (UAV) granular fertilizer spreading technology has been gradually applied in agricultural production. However, in the process of spreading operation, the actual influence effect of each factor in field operation is still unclear. Based on the self-developed UAV fertilizer spreading system, this paper explores the effects of three factors, the baffle retraction (B), spreading disc speed (D), and UAV flight altitude (H), on the granular fertilizer spreading effect in the actual field scenarios through the orthogonal test and taking the coefficient of variation (Cv) and relative error of fertilizer application rate (λ) as the evaluation indexes. The results showed that the optimal factor level combination of Cv was 11.23 % for BbDbHa (the baffle retraction is 6 %, spreading disc speed is 600r/min, and UAV flight height is 1.5 m) at UAV flight speed of 2 m/s. The best factor level combination for λ was BbDbHb of 7.99 % (the baffle retraction is 6 %, spreading disc speed is 600r/min, and UAV flight height is 2 m). In addition, by analysing the influence of the weather and the vortex of the rice canopy on the actual spreading effect, it was found that the weather has less influence on the spreading effect of this system, while the vortex caused by the airflow of the UAV rotor has a certain influence on the spreading effect, which is also relatively easy to ignore in fertilizer spreading operations. The results of the study can be used to explore the operational effects of actual fertilizer application by UAVs in rice field, which will help promote the development of UAV spreading technology and provide a reference for precision fertilizer application through agricultural aviation.

2.
IEEE Trans Image Process ; 33: 825-839, 2024.
Article in English | MEDLINE | ID: mdl-38231817

ABSTRACT

Scene text spotting is a challenging task, especially for inverse-like scene text, which has complex layouts, e.g., mirrored, symmetrical, or retro-flexed. In this paper, we propose a unified end-to-end trainable inverse-like antagonistic text spotting framework dubbed IATS, which can effectively spot inverse-like scene texts without sacrificing general ones. Specifically, we propose an innovative reading-order estimation module (REM) that extracts reading-order information from the initial text boundary generated by an initial boundary module (IBM). To optimize and train REM, we propose a joint reading-order estimation loss ( LRE ) consisting of a classification loss, an orthogonality loss, and a distribution loss. With the help of IBM, we can divide the initial text boundary into two symmetric control points and iteratively refine the new text boundary using a lightweight boundary refinement module (BRM) for adapting to various shapes and scales. To alleviate the incompatibility between text detection and recognition, we propose a dynamic sampling module (DSM) with a thin-plate spline that can dynamically sample appropriate features for recognition in the detected text region. Without extra supervision, the DSM can proactively learn to sample appropriate features for text recognition through the gradient returned by the recognition module. Extensive experiments on both challenging scene text and inverse-like scene text datasets demonstrate that our method achieves superior performance both on irregular and inverse-like text spotting.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122211, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36502762

ABSTRACT

Conventional surface-enhanced Raman scattering (SERS) molecular detection are based on hard and brittle substrate, which are not suitable for in-situ detection of analytes adsorbed on nonplanar surfaces. Here, we report a simple biomimetic synthesis method to fabricate lotus leaf mastoid structured AgNPs micro/nanoarrays as reliable SERS substrate. By ideal replicating mastoid structure of lotus leaf into a flexible and transparent PDMS film, followed by depositing plasmonic AgNPs, a powerful chemical sensor with high sensitivity and multiplex detecting capability is demonstrated. The employ of periodic mastoid structure array endows the sensor with high signal repeatability (RSD âˆ¼ 8.6 %), solving the general repeatability problem of SERS substrates. In addition, the detailed designed flexible and transparent PDMS substrate is capable of identifying trace analytes on curved surfaces with excellent durability. In the proof-of-concept experiment, a limit of detection (LOD) of (10-5 M to 10-7 M) was achieved on a portable Raman device for three common pesticides residues (thiram, fonofos and triadophos) on dendrobium leaves and stem according to the molecular fingerprint, indicating its excellent in-situ detection capability. Further, the multiplex detection ability of the Ag/PDMS film is also demonstrated by analyzing the mixture of four typical analytes. Benefiting from its high signal uniformity, this flexible Ag/PDMS substrate also showed good quantitative detection capabilities.


Subject(s)
Lotus , Pesticide Residues , Pesticide Residues/analysis , Thiram/analysis , Spectrum Analysis, Raman/methods
4.
Pak J Med Sci ; 38(6): 1460-1465, 2022.
Article in English | MEDLINE | ID: mdl-35991249

ABSTRACT

Objectives: To evaluate the clinical efficacy of early postoperative intensity-modulated radiotherapy (IMRT) combined with temozolomide chemotherapy in the treatment of patients with malignant glioma. Methods: In this retrospective cohort study 80 patients with glioma surgery admitted to Chengde Central Hospital from January 2019 to January 2021 were selected and divided into two groups according to postoperative treatment: the experimental group and the control group, with 40 cases in each group. Patients in the experimental group received IMRT combined with temozolomide chemotherapy postoperatively, while those in the control group received IMRT alone. The clinical effects of patients were analyzed before treatment and three months after treatment, and the incidence of adverse reactions such as bone marrow suppression, gastrointestinal reactions, fever, and liver dysfunction were analyzed in the two groups within one month after treatment. Before treatment and two months after treatment, MMSE scale, QOL scale and KPS were used to compare the cognitive function and health status of the patients. All patients were followed up for one year after treatment, and the difference of disease progression-free survival and overall survival rate between the two groups was analyzed. Results: The effective rate of the experimental group was 70% after treatment, while that of the control group was 43.3%, with a statistically significant difference (P=0.04). The incidence of adverse reactions was 50% in the experimental group and 40% in the control group, with no statistically significant difference between the two groups (P=0.25). After treatment, MMSE score, QOL score and KPS score of the experimental group were significantly improved compared with those of the control group, with statistically significant differences between the two groups (MMSE score, QOL, P=0.00; KPS, P=0.01). Moreover, the two groups of patients were followed up for one year after treatment. The disease progression-free survival rate of the experimental group was 70% and that of the control group was 47.5%, with a statistically significant difference (P=0.04), and the overall survival rate of the experimental group was significantly higher than that of the control group after treatment, with a statistically significant difference (P=0.03). Conclusion: Early postoperative IMRT combined with temozolomide chemotherapy is an effective treatment regimen for patients with malignant glioma, boasting a variety of advantages such as high efficiency, cognitive function, favorable recovery of health status, significantly improved progression-free survival rate and overall survival rate, and no significant increase in adverse reactions.

5.
Geophys Res Lett ; 49(2): e2021GL096335, 2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35860603

ABSTRACT

Shock waves in collisionless plasmas are among the most efficient particle accelerators in space. Shock reformation is a process important to plasma heating and acceleration, but direct observations of reformation at quasi-parallel shocks have been lacking. Here, we investigate Earth's quasi-parallel bow shock with observations by the four Magnetospheric Multiscale spacecraft. The multi-spacecraft observations provide evidence of short large-amplitude magnetic structures (SLAMS) causing reformation of the quasi-parallel shock. We perform an ion-kinetic Vlasiator simulation of the bow shock and show that SLAMS reforming the bow shock recreates the multi-spacecraft measurements. This provides a method for identifying shock reformation in the future.

6.
Front Oncol ; 12: 1059999, 2022.
Article in English | MEDLINE | ID: mdl-36591449

ABSTRACT

Background: Lung cancer is the leading cause of cancer-related death worldwide, with risk factors such as age and smoking. Low-dose computed tomography screening can reduce lung cancer mortality. However, its effectiveness in Asian populations remains unclear. Most Asian women with lung cancer are non-smokers who have not been screened. We conducted a randomized controlled trial to evaluate the performance of low-dose computed tomography screening in a Chinese population, including high-risk smokers and non-smokers exposed to passive smoking. The baseline data are reported in this study. Methods: Between May and December 2019, eligible participants were randomized in a ratio of 1:1:1 to a screening (two arms) or control cohort. Non-calcified nodules/masses with a diameter >4 mm on low-dose computed tomography were considered positive findings. Results: In total, 600 patients (mean age, 59.1 ± 6.9 years) underwent low-dose computed tomography. Women accounted for 31.5% (189/600) of patients; 89.9% (170/189) were non-smokers/passive smokers. At baseline, the incidence of lung cancer was 1.8% (11/600). The incidence of lung cancer was significantly lower in smokers than in female non-smokers/passive smokers (1.0% [4/415] vs. 4.1% [7/170], respectively; P=0.017). Stage 0-I lung cancer accounted for 90.9% (10/11) of cases. Conclusions: We demonstrate the importance of including active smokers and female non-smokers/passive smokers in lung cancer screening programs. Further studies are needed to explore the risk factors, and long-term cost-benefit of screening Asian non-smoking women. Clinical trial registration: http://chictr.org.cn/showproj.aspx?proj=39003, identifier ChiCTR1900023197.

7.
Molecules ; 26(18)2021 Sep 12.
Article in English | MEDLINE | ID: mdl-34577010

ABSTRACT

Cellulose nanofibrils (CNF) with high thermal stability and excellent electrolyte wettability attracted tremendous attention as a promising separator for the emerging sodium-ion batteries. The pore structure of the separator plays a vital role in electrochemical performance. CNF separators are assembled using the bottom-up approach in this study, and the pore structure is carefully controlled through film-forming techniques. The acid-treated separators prepared from the solvent exchange and freeze-drying demonstrated an optimal pore structure with a high electrolyte uptake rate (978.8%) and Na+ transference number (0.88). Consequently, the obtained separator showed a reversible specific capacity of 320 mAh/g and enhanced cycling performance at high rates compared to the commercial glass fiber separator (290 mAh/g). The results highlight that CNF separators with an optimized pore structure are advisable for sodium-ion batteries.

8.
Front Plant Sci ; 11: 453, 2020.
Article in English | MEDLINE | ID: mdl-32508850

ABSTRACT

In some legume-rhizobium symbioses, host specificity is influenced by rhizobial type III effectors-nodulation outer proteins (Nops). However, the genes encoding host proteins that interact with Nops remain unknown. In this study, we aimed to identify candidate soybean genes associated with NopD, one of the type III effectors of Sinorhizobium fredii HH103. The results showed that the expression pattern of NopD was analyzed in rhizobia induced by genistein. We also found NopD can be induced by TtsI, and NopD as a toxic effector can induce tobacco leaf death. In 10 soybean germplasms, NopD played a positively effect on nodule number (NN) and nodule dry weight (NDW) in nine germplasms, but not in Kenjian28. Significant phenotype of NN and NDW were identified between Dongnong594 and Charleston, Suinong14 and ZYD00006, respectively. To map the quantitative trait locus (QTL) associated with NopD, a recombinant inbred line (RIL) population derived from the cross between Dongnong594 and Charleston, and chromosome segment substitution lines (CSSLs) derived from Suinong14 and ZYD00006 were used. Two overlapping conditional QTL associated with NopD on chromosome 19 were identified. Two candidate genes were identified in the confident region of QTL, we found that NopD could influence the expression of Glyma.19g068600 (FBD/LRR) and expression of Glyma.19g069200 (PP2C) after HH103 infection. Haplotype analysis showed that different types of Glyma.19g069200 haplotypes could cause significant nodule phenotypic differences, but Glyma.19g068600 (FBD/LRR) was not. These results suggest that NopD promotes S. fredii HH103 infection via directly or indirectly regulating Glyma.19g068600 and Glyma.19g069200 expression during the establishment of symbiosis between rhizobia and soybean plants.

9.
Phys Chem Chem Phys ; 21(35): 19288-19297, 2019 Sep 21.
Article in English | MEDLINE | ID: mdl-31451821

ABSTRACT

This paper reports a facile, fast, and cost-effective method for the synthesis of three-dimensional (3D) porous AgNPs/Cu composites as SERS substrates for the super-sensitive and quantitative detection of food organic contaminations. Due to the 3D porous hotspot architecture and the strong plasmonic coupling between Ag and Cu, the porous AgNPs/Cu substrate achieves ultrasensitive detection of multiple analytes as low as 10-11 M (crystal violet, CV), 10-9 M (malachite green, MG), 10-11 M (acephate), and 10-9 M (thiram) even with a portable Raman device. Moreover, this 3D solid substrate has good signal uniformity (RSD < 11%) and superior stability (<14% signal loss), allowing for practical SERS detections. Importantly, by simply wiping the real sample surface using the substrate, it successfully detects CV and MG residues on crayfish, and the limit of detection (LOD) of CV and MG is determined to be 1.14 × 10-9 M and 0.94 × 10-7 M, respectively. Further, the substrate can also be applied to detect acephate on eggplant with a LOD of 1.41 × 10-9 M and thiram on an apple surface with a LOD of 1.04 × 10-7 M. Note that all these SERS detections on real samples have a broad dynamic concentration range and a good linear dependence. As a "proof of concept", multi-component detection on a real sample has also been demonstrated. This 3D solid substrate possesses excellent detection sensitivity, diversity, and accuracy, which allows rapid and reliable determination of toxic substances in foods.


Subject(s)
Chemistry Techniques, Analytical/methods , Food Analysis/methods , Food Contamination/analysis , Pesticides/analysis , Spectrum Analysis, Raman , Animals , Chemistry Techniques, Analytical/economics , Copper/chemistry , Limit of Detection , Metal Nanoparticles/chemistry , Reproducibility of Results , Silver/chemistry
10.
Sensors (Basel) ; 16(6)2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27338403

ABSTRACT

Heavy ice coating of high-voltage overhead transmission lines may lead to conductor breakage and tower collapse causing the unexpected interrupt of power supply. The optical load cell applied in ice monitoring systems is immune to electromagnetic interference and has no need of a power supply on site. Therefore, it has become a hot research topic in China and other countries. In this paper, to solve the problem of eccentric load in measurement, we adopt the shearing structure with additional grooves to improve the strain distribution and acquire good repeatability. Then, the fiber Bragg grating (FBG) with a permanent weldable package are mounted onto the front/rear groove of the elastic element by spot welding, the direction deviation of FBGs is 90° from each other to achieve temperature compensation without an extra FBG. After that, protection parts are designed to guarantee high sensitivity for a light load condition and industrial safety under a heavy load up to 65 kN. The results of tension experiments indicate that the sensitivity and resolution of the load cell is 0.1285 pm/N and 7.782 N in the conventional measuring range (0-10 kN). Heavy load tension experiments prove that the protection structure works and the sensitivity and resolution are not changed after several high load (65 kN) cycles. In addition, the experiment shows that the resolution of the sensor is 87.79 N in the large load range, allowing the parameter to be used in heavy icing monitoring.

11.
Eur J Med Chem ; 120: 37-50, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27187857

ABSTRACT

Six series of novel 4-(2-fluorophenoxy)-3,3'-bipyridine derivatives conjugated with aza-aryl formamide/amine scaffords were designed and synthesized through a structure-based molecular hybridization approach. The target compounds were evaluated for c-Met kinase inhibitory activities and cytotoxicity against four cancer cell lines (HT-29, A549, MKN-45 and MDA-MB-231) in vitro. Most compounds exhibited moderate to excellent potency, and the most promising candidate 26c (c-Met kinase IC50 = 8.2 nM) showed a 4.7-fold increase in cytotoxicity against c-Met-addicted MKN-45 cell line in vitro (IC50 = 3 nM), superior to that of Foretinib (IC50 = 23 nM). The preliminary structure-activity relationship indicated that a 1H-benzo [e] [1,3,4]thiadiazine-3-carboxamide-4,4-dioxide moiety as linker contributed to the antitumor potency.


Subject(s)
Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyridines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Humans , Inhibitory Concentration 50 , Protein Kinase Inhibitors/pharmacology , Pyridines/chemical synthesis , Structure-Activity Relationship
12.
Mar Pollut Bull ; 106(1-2): 58-61, 2016 May 15.
Article in English | MEDLINE | ID: mdl-27016330

ABSTRACT

The heavy fuel oils (HFOs) and crude oils are the main oil types in the marine oil spill accidents in China. It is usually a challenge to distinguish the HFOs from crude oils due to the highly similar physicochemical characteristics. In this paper, the distributions of phenanthrene (Phe), anthracene (Ant), methyl-phenanthrene (MP) and methyl-anthracene (MA) in hundreds of HFOs and crude oils samples which were collected from all over the world were characterized. Nine new diagnostic indexes, such as Ant/(Ant+Phe) and other eight diagnostic ratios based on the MP isomers and MA, were developed for effective distinguishing HFOs from crude oils. The histogram with normal fit plots, the double ratio plots and Bayes discriminant analysis (BDA) method were employed to illustrate the effectiveness of the new diagnostic indexes. BDA model based on nine new diagnostic indexes demonstrated high precision with discriminant ratio which lay between 93.92% and 99.32%.


Subject(s)
Fuel Oils , Petroleum , Anthracenes , Bayes Theorem , Phenanthrenes
13.
Bioorg Med Chem ; 24(6): 1331-45, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26897090

ABSTRACT

In continuing our efforts to identify small molecules able to inhibit c-Met kinase, three series of novel 6,7-disubstituted-4-phenoxyquinoline derivatives (23a-w, 26a-d and 30a-d) bearing (thio)semicarbazone scaffold were designed, synthesized and evaluated for their cytotoxicity. The biological data revealed that most compounds exhibited moderate-to-excellent activity against HT-29, MKN-45, A549 cancer cell lines and relative poor potency toward MDA-MB-231 cell as well as hardly any cytotoxicity in normal PBL cell. Eleven compounds were further examined for their inhibitory activity against c-Met kinase and three compounds (23h, 23n and 26a) demonstrated good inhibitory activity. This work resulted in the discovery of a potent c-Met inhibitor 23n, bearing 2-hydroxy-3-allylphenyl group at R(2) moiety, as a valuable lead molecule, which possessed remarkable cytotoxicity and high selectivity against A549 and HT-29 cell lines with IC50 values of 11 nM and 27 nM. Besides, it displayed excellent c-Met kinase inhibition on a single-digital nanomolar level (IC50=1.54 nM). Meanwhile, the results from preliminarily in vivo study reflected that compound 23n showed promising overall PK profiles, consistent with the efficacy in both MKN-45 and HT-29 tumor xenograft mice model. These results clearly indicated that compound 23n is a potent and highly selective c-Met inhibitor and its favorable in vitro and in vivo profiles warrant further investigation.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Quinolines/pharmacology , Semicarbazones/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , HT29 Cells , Humans , Mice , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-met/metabolism , Quinolines/chemical synthesis , Quinolines/chemistry , Semicarbazones/chemistry , Structure-Activity Relationship
14.
Rev Sci Instrum ; 86(10): 106103, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26521000

ABSTRACT

A fiber Bragg grating (FBG) sensor based on chemically etched cladding to detect dissolved hydrogen is proposed and studied in this paper. Low hydrogen concentration tests have been carried out in mixed gases and transformer oil to investigate the repeatability and sensitivity. Moreover, to estimate the influence of etched cladding thickness, a physical model of FBG-based hydrogen sensor is analyzed. Experimental results prove that thin cladding chemically etched by HF acid solution improves the response to hydrogen detection in oil effectively. At last, the sensitivity of FBG sensor chemically etched 16 µm could be as high as 0.060 pm/(µl/l), increased by more than 30% in comparison to un-etched FBG.

15.
J Nanosci Nanotechnol ; 13(10): 6687-93, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24245130

ABSTRACT

Monodispersed and luminescent Ag-doped CdSe semiconductor quantum dots (d-dots) were synthesized by an aqueous route assisted with electrochemical preparation of Se source with 3-mercaptopropionic acid as stabilizer. The silver dopants were incorporated into the host crystals via cation-exchange mechanism. X-ray diffraction patterns revealed that the as-synthesized CdSe:Ag d-dots were well retained in the zinc blende structure. The CdSe:Ag d-dots that exhibited uniform size distribution and good crystallnity could be observed by High-resolution transmission electron microscopy (HRTEM), with average diameter of 2.7 nm. Successful doping was confirmed by X-ray photoelectron spectroscopy survey spectra. The peculiar Ag-related photoluminescence showed strong intensity, and at the same time, intrinsic band-edge exciton emission of CdSe QDs was suppressed. The dopant emission exhibited larger Stockes shift of - 0.51 eV than that of the band-gap emission, and varied from 546 to 583 nm by changing electrolytic time. Possible radiative recombination mechanism of the aqueous Ag-doped CdSe d-dots was discussed. The results demonstrated that doping can be an effective way to manipulate the optical properties of semiconductor nanocrystals.

16.
Nanotechnology ; 24(28): 285201, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23787792

ABSTRACT

Composition-controllable ternary CdSe(x)S(1-x) quantum dots (QDs) with multiple emission colors were obtained via a hot-injection-like method at a relatively low injection temperature (230 ° C) in octadecene. Then highly fluorescent CdSe(x)S(1-x)/ZnS core/shell (CS) QDs were synthesized by a facile single-molecular precursor approach. The fluorescent quantum yield of the resulting green (λ(em) = 523 nm), yellow (λ(em) = 565 nm) and red (λ(em) = 621 nm) emission of CS QDs in toluene reached up to 85%, 55% and 39%, respectively. Moreover, a QDs white light-emitting diode (QDs-WLED) was fabricated by hybridizing green-, yellow- and red-emitting CdSe(x)S(1-x)/ZnS CS QDs/epoxy composites on a blue InGaN chip. The resulting four-band RYGB QDs-WLED showed good performance with CIE-1931 coordinates of (0.4137, 0.3955), an R(a) of 81, and a T(c) of 3360 K at 30 mA, which indicated the combination of multiple-color QDs with high fluorescence QYs in LEDs as a promising approach to obtain warm WLEDs with good color rendering.

17.
Chemistry ; 14(31): 9786-91, 2008.
Article in English | MEDLINE | ID: mdl-18792043

ABSTRACT

A novel tetraethylenepentamine (TEPA)-directed method has been successfully developed for the controlled synthesis of ZnSe particles with distinctive morphologies, including nanobelts, nanowires, and hierarchically solid/hollow spheres. These structures, self-assembled from nanobelts and nanorods, have been synthesized by adjusting the reaction parameters, such as the solvent composition, reaction temperature, and the aging time. Results reveal that the volume ratio of H2O and TEPA plays a crucial role in the final morphology of ZnSe products. The mechanisms of phase formation and morphology control of ZnSe particles are proposed and discussed in detail. The products have been characterized by means of X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), selected area electron diffraction, high-resolution TEM, Raman spectra and luminescence spectroscopy. The as-prepared ZnSe nanoparticles display shape- and size-dependent photoluminescent optical properties. This is the first time to report preparation of complex hollow structures of ZnSe crystals with hierarchy through a simple solution-based route. This synthetic route is designed to exploit a new H2O/TEPA/N2H4H2O system possibly for the preparation of other semiconductor nanomaterials.

18.
J Nanosci Nanotechnol ; 7(12): 4494-500, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18283833

ABSTRACT

Silica-coated ZnSe nanowires with well-controlled the thickness of sheath in the range of 10-60 nm have been synthesized through a simple sol-gel process. The thickness of silica coating could be controlled through altering reaction parameters such as volume ratio of TEOS and ammonia. XRD, high-resolution TEM, X-ray photoelectron spectroscopy (XPS), Raman spectra, thermogravimetric analysis (TGA), and photoluminescence (PL) spectra were used to characterize the core/sheath nanostructures. Room-temperature PL measurements indicate these silica-coated ZnSe nanowires remarkably improve the PL intensity. Meanwhile, the thermal stability has been enhanced greatly, which is useful for their potential applications in advanced semiconductor devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...