Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 901
Filter
1.
Front Public Health ; 12: 1381273, 2024.
Article in English | MEDLINE | ID: mdl-38841667

ABSTRACT

Introduction: It remains unclear whether depressive symptoms are associated with increased all-cause mortality and to what extent depressive symptoms are associated with chronic disease and all-cause mortality. The study aims to explore the relationship between depressive symptoms and all-cause mortality, and how depressive symptoms may, in turn, affect all-cause mortality among Chinese middle-aged and older people through chronic diseases. Methods: Data were collected from the China Health and Retirement Longitudinal Study (CHARLS). This cohort study involved 13,855 individuals from Wave 1 (2011) to Wave 6 (2020) of the CHARLS, which is a nationally representative survey that collects information from Chinese residents ages 45 and older to explore intrinsic mechanisms between depressive symptoms and all-cause mortality. The Center for Epidemiological Studies Depression Scale (CES-D-10) was validated through the CHARLS. Covariates included socioeconomic variables, living habits, and self-reported history of chronic diseases. Kaplan-Meier curves depicted mortality rates by depressive symptom levels, with Cox proportional hazards regression models estimating the hazard ratios (HRs) of all-cause mortality. Results: Out of the total 13,855 participants included, the median (Q1, Q3) age was 58.00 (51.00, 63.00) years. Adjusted for all covariates, middle-aged and older adults with depressive symptoms had a higher all-cause mortality rate (HR = 1.20 [95% CI, 1.09-1.33]). An increased rate was observed for 55-64 years old (HR = 1.23 [95% CI, 1.03-1.47]) and more than 65 years old (HR = 1.32 [95% CI, 1.18-1.49]), agricultural Hukou (HR = 1.44, [95% CI, 1.30-1.59]), and nonagricultural workload (HR = 1.81 [95% CI, 1.61-2.03]). Depressive symptoms increased the risks of all-cause mortality among patients with hypertension (HR = 1.19 [95% CI, 1.00-1.40]), diabetes (HR = 1.41[95% CI, 1.02-1.95]), and arthritis (HR = 1.29 [95% CI, 1.09-1.51]). Conclusion: Depressive symptoms raise all-cause mortality risk, particularly in those aged 55 and above, rural household registration (agricultural Hukou), nonagricultural workers, and middle-aged and older people with hypertension, diabetes, and arthritis. Our findings through the longitudinal data collected in this study offer valuable insights for interventions targeting depression, such as early detection, integrated chronic disease care management, and healthy lifestyles; and community support for depressive symptoms may help to reduce mortality in middle-aged and older people.


Subject(s)
Depression , Humans , Male , Female , China/epidemiology , Depression/epidemiology , Depression/mortality , Middle Aged , Chronic Disease/mortality , Longitudinal Studies , Aged , Cause of Death , Risk Factors , Mortality/trends , Proportional Hazards Models
2.
Int Urol Nephrol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829465

ABSTRACT

PURPOSE: We performed the study to investigate the association between heart rate (HR) non-dipping pattern and target organ damage in patients with chronic kidney disease (CKD) and hypertension. METHODS: In this cross-sectional study, 447 patients with CKD and hypertension were enrolled. 24 h ambulatory blood pressure monitoring was conducted. Linear regression and logistic regression analysis were conducted to investigate the association between HR non-dipping pattern and target organ damage, including estimated glomerular filtration rate (eGFR), left ventricular mass index (LVMI), and left ventricular hypertrophy (LVH). RESULTS: Overall, 261 patients (58.4%) followed non-dipping patterns of HR. HR non-dipping pattern remained to be significantly associated with reduced eGFR (ß: -0.384; 95% CI: -0.719 to -0.050; p = 0.025) and the higher prevalence of CKD stages 4-5 (OR: 2.141; 95% CI: 1.153 to 3.977; p = 0.016). Meanwhile, HR non-dipping pattern was independently associated with LVMI (ß: 0.021; 95% CI: 0.000 to 0.041; p = 0.049) and LVH (OR: 1.78; 95% CI: 1.07 to 2.96; p = 0.027) after adjusting for confounding factors. CONCLUSIONS: HR non-dipping pattern was independently associated with impaired renal function and cardiac damage. Non-dipping HR deserves further attention and needs to be detected and treated during the management of CKD patients.

3.
J Glob Health ; 14: 04094, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38845456

ABSTRACT

Background: Maternal empowerment - the capacity to make decisions within households - is linked to better child feeding and nutritional outcomes, but few studies have considered the mediating role of caregiver knowledge. Further, existing literature centres primarily on the husband-wife dyad while overlooking grandmothers as important childcare decision-makers. Methods: We collected primary data through household surveys in 2019 and 2021 from 1190 households with infants zero to six months living in rural western China. We identified the primary and secondary caregivers for each infant and assessed their feeding knowledge and practices, as well as infant nutritional status. We constructed a maternal empowerment index using a seven-item decision-making questionnaire and examined the relationship between maternal empowerment in childcare and household decisions, caregivers' feeding knowledge, and infant feeding practices and nutritional outcomes. Results: Mothers had significantly higher levels of feeding knowledge than secondary caregivers (most were grandmothers, 72.7%), with average knowledge scores of 5.4 vs. 4.1, respectively, out of 9. Mothers and secondary caregivers with higher levels of feeding knowledge had significantly higher exclusive breastfeeding rates by 13-15 percentage points (P < 0.01) and 11-13 percentage points (P < 0.01), respectively. The knowledge of secondary caregivers was even more strongly associated with not feeding formula (15 percentage points, P < 0.01). Mothers empowered to make childcare decisions were more likely to exclusively breastfeed (12-13 percentage points, P < 0.01), less likely to formula feed (9-10 percentage points, P < 0.05), and more likely to have children with higher Z-scores for length-for-age (0.32-0.33, P < 0.01) and weight-for-age (0.24-0.25, P < 0.05). Effects remained after controlling for maternal feeding knowledge. Conclusions: While mothers' and grandmothers' feeding knowledge was both important for optimal infant feeding, grandmothers' knowledge was particularly critical for practicing exclusive breastfeeding. Given the disparity in feeding knowledge between the two caregivers, our study further shows that mothers empowered in childcare decision-making were more likely to exclusively breastfeed their infants. This implies that some mothers with adequate knowledge may not practice optimal feeding because of lower decision-making power. Overall, our study highlights the role of secondary caregivers (grandmothers) in infant care and suggests that future child nutritional interventions may benefit from involving secondary caregivers (grandmothers). Registration: Parent trial registration: ISRCTN16800789.


Subject(s)
Breast Feeding , Empowerment , Health Knowledge, Attitudes, Practice , Infant Nutritional Physiological Phenomena , Mothers , Rural Population , Humans , China , Infant , Female , Mothers/psychology , Mothers/statistics & numerical data , Adult , Infant, Newborn , Breast Feeding/psychology , Breast Feeding/statistics & numerical data , Male , Nutritional Status , Surveys and Questionnaires , Caregivers/psychology , Caregivers/statistics & numerical data , Grandparents/psychology , Decision Making
4.
Quant Imaging Med Surg ; 14(6): 3951-3958, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846305

ABSTRACT

Background: With the increase of pancreatic tumor patients in recent years, there is an urgent need to find a way to treat pancreatic tumors. Surgery is one of the best methods for the treatment of pancreatic tumors, the success of which depends on the evaluation of peripancreatic vessels before surgery. Computed tomography (CT), as a non-invasive, fast, and economical auxiliary examination method, is undoubtedly one of the best means of clinical auxiliary examination. In this study, we investigated the impact of single-energy spectral CT imaging on the image quality of peripancreatic blood vessels and the clinical value of low-keV imaging in enhancing the image quality of peripancreatic arteriovenous vessels. Methods: We prospectively enrolled 103 patients who underwent abdominal vascular-enhanced CT examinations at the Affiliated Hospital of Hebei University between December 2022 and May 2023 and who were all scanned with the dual-energy feature on the United Imaging ATLAS scanner. The images were reconstructed at 70 keV, mixed energy, and optimized single energy in the post-processing station of United Imaging Healthcare Technology Co., Ltd. The CT value and contrast-to-noise ratio (CNR) of the superior mesenteric artery (SMA), gastroduodenal artery (GDA), inferior pancreaticoduodenal artery (IPDA), and superior mesenteric vein (SMV) were compared across energy levels, and then the image quality was subjectively evaluated. One-way analysis of variance and rank-sum tests were utilized for the statistical analysis. Results: The CT values of SMA, GDA, IPDA, and SMV in the optimal single energy group were 358.37±70.24, 323.36±88.23, 300.76±76.27, and 257.74±20.56 Hounsfield unit (HU), respectively, which were superior to those in the mixed energy (241.66±47.69, 235.17±53.71, 207.36±45.17, and 187.39±23.21 HU) and 70 keV groups (260.89±54.27, 252.41±58.87, 223.17±43.65, and 203.18±18.17 HU) (P<0.05). The diagnostic efficacy was greater in the optimal single energy group than in the other 2 groups (4.63±0.50, 3.91±0.57, and 4.23±0.83) (P<0.05). Conclusions: The optimal single energy for showing peripancreatic blood vessels is 62±7 keV when utilizing single-energy spectral CT imaging.

5.
Int J Nanomedicine ; 19: 5109-5123, 2024.
Article in English | MEDLINE | ID: mdl-38846643

ABSTRACT

Introduction: Lumbar interbody fusion is widely employed for both acute and chronic spinal diseases interventions. However, large incision created during interbody cage implantation may adversely impair spinal tissue and influence postoperative recovery. The aim of this study was to design a shape memory interbody fusion device suitable for small incision implantation. Methods: In this study, we designed and fabricated an intervertebral fusion cage that utilizes near-infrared (NIR) light-responsive shape memory characteristics. This cage was composed of bisphenol A diglycidyl ether, polyether amine D-230, decylamine and iron oxide nanoparticles. A self-hardening calcium phosphate-starch cement (CSC) was injected internally through the injection channel of the cage for healing outcome improvement. Results: The size of the interbody cage is reduced from 22 mm to 8.8 mm to minimize the incision size. Subsequent NIR light irradiation prompted a swift recovery of the cage shape within 5 min at the lesion site. The biocompatibility of the shape memory composite was validated through in vitro MC3T3-E1 cell (osteoblast-like cells) adhesion and proliferation assays and subcutaneous implantation experiments in rats. CSC was injected into the cage, and the relevant results revealed that CSC is uniformly dispersed within the internal space, along with the cage compressive strength increasing from 12 to 20 MPa. Conclusion: The results from this study thus demonstrated that this integrated approach of using a minimally invasive NIR shape memory spinal fusion cage with CSC has potential for lumbar interbody fusion.


Subject(s)
Spinal Fusion , Spinal Fusion/instrumentation , Spinal Fusion/methods , Animals , Mice , Rats , Calcium Phosphates/chemistry , Minimally Invasive Surgical Procedures/instrumentation , Minimally Invasive Surgical Procedures/methods , Lumbar Vertebrae/surgery , Rats, Sprague-Dawley , Male , Compressive Strength , Cell Proliferation/drug effects , Bone Cements/chemistry , Smart Materials/chemistry , Cell Adhesion/drug effects
6.
Regen Biomater ; 11: rbae053, 2024.
Article in English | MEDLINE | ID: mdl-38883183

ABSTRACT

Healing of chronic diabetic wounds is challenging due to complications of severe inflammatory microenvironment, bacterial infection and poor vascular formation. Herein, a novel injectable polyvinyl alcohol-hyaluronic acid-based composite hydrogel was developed, with tannic acid (TA) and silicate functionalization to fabricate an 'all-in-one' hydrogel PTKH. On one hand, after being locally injected into the wound site, the hydrogel underwent a gradual sol-gel transition in situ, forming an adhesive and protective dressing for the wound. Manipulations of rheological characteristics, mechanical properties and swelling ability of PTKH could be performed via regulating TA and silicate content in hydrogel. On the other hand, PTKH was capable of eliminating reactive oxygen species overexpression, combating infection and generating a cell-favored microenvironment for wound healing acceleration in vitro. Subsequent animal studies demonstrated that PTKH could greatly stimulate angiogenesis and epithelization, accompanied with inflammation and infection risk reduction. Therefore, in consideration of its impressive in vitro and in vivo outcomes, this 'all-in-one' multifunctional hydrogel may hold promise for chronic diabetic wound treatment.

7.
Chin J Cancer Res ; 36(2): 151-166, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38751437

ABSTRACT

Throughout tumorigenesis, the co-evolution of tumor cells and their surrounding microenvironment leads to the development of malignant phenotypes. Cellular communication within the tumor microenvironment (TME) plays a critical role in influencing various aspects of tumor progression, including invasion and metastasis. The release of exosomes, a type of extracellular vesicle, by most cell types in the body, is an essential mediator of intercellular communication. A growing body of research indicates that tumor-derived exosomes (TDEs) significantly expedite tumor progression through multiple mechanisms, inducing epithelial-mesenchymal transition and macrophage polarization, enhancing angiogenesis, and aiding in the immune evasion of tumor cells. Herein, we describe the formation and characteristics of the TME, and summarize the contents of TDEs and their diverse functions in modulating tumor development. Furthermore, we explore potential applications of TDEs in tumor diagnosis and treatment.

8.
Stroke ; 55(6): 1592-1600, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38787930

ABSTRACT

BACKGROUND: Current evidence provides limited support for the superiority of endovascular thrombectomy (EVT) in patients with M2 segment middle cerebral artery occlusion. We aim to investigate whether imaging features of M2 segment occlusion impact the effectiveness of EVT. METHODS: We conducted a retrospective cohort study from January 2017 to January 2022, drawing data from the CASE II registry (Computer-Based Online Database of Acute Stroke Patients for Stroke Management Quality Evaluation), which specifically documented patients with acute ischemic stroke presenting with M2 segment occlusion undergoing reperfusion therapy. Patients were stratified into the intravenous thrombolysis (IVT) group (IVT alone) and EVT group (IVT plus EVT or EVT alone). The primary outcome was a modified Rankin Scale score 0 to 2 at 90 days. Secondary outcomes included additional thresholds and distribution of modified Rankin Scale scores, 24-hour recanalization, early neurological deterioration, and relevant complications during hospitalization. Safety outcomes encompassed intracranial hemorrhagic events at 24 hours and mortality at 90 days. Binary logistic regression analyses with propensity score matching were used. Subgroup analyses were performed based on the anatomic site of occlusion, including right versus left, proximal versus distal, dominant/co-dominant versus nondominant, single versus double/triple branch(es), and anterior versus central/posterior branch. RESULTS: Among 734 patients (43.3% were females; median age, 73 years) with M2 segment occlusion, 342 (46.6%) were in the EVT group. Propensity score matching analysis revealed no statistical difference in the primary outcome (odds ratio, 0.860 [95% CI, 0.611-1.209]; P=0.385) between the EVT group and IVT group. However, EVT was associated with a higher incidence of subarachnoid hemorrhage (odds ratio, 6.655 [95% CI, 1.487-29.788]; P=0.004) and pneumonia (odds ratio, 2.015 [95% CI, 1.364-2.977]; P<0.001). Subgroup analyses indicated that patients in the IVT group achieved better outcomes when presenting with right, distal, or nondominant branch occlusion (Pall interaction<0.05). CONCLUSIONS: Our study showed similar efficiency of EVT versus IVT alone in acute M2 segment middle cerebral artery occlusion. This suggested that only specific patient subpopulations might have a potentially higher benefit of EVT over IVT alone. REGISTRATION: URL: https://clinicaltrials.gov; Unique identifier: NCT04487340.


Subject(s)
Infarction, Middle Cerebral Artery , Thrombectomy , Thrombolytic Therapy , Humans , Male , Female , Thrombectomy/methods , Aged , Infarction, Middle Cerebral Artery/surgery , Thrombolytic Therapy/methods , Middle Aged , Retrospective Studies , Treatment Outcome , Aged, 80 and over , Endovascular Procedures/methods , Registries , Ischemic Stroke/surgery , Ischemic Stroke/drug therapy , Ischemic Stroke/therapy
9.
Am J Transl Res ; 16(4): 1306-1321, 2024.
Article in English | MEDLINE | ID: mdl-38715824

ABSTRACT

BACKGROUND: Osteoporosis (OP) stands as a prevalent bone ailment affecting the elderly, globally. The identification of reliable diagnostic markers crucially aids OP clinical management. METHODS: Utilizing the GEO database (GSE35959), we acquired expression profiles for OP and normal samples. Differential expression genes (DEGs) and hub genes were pinpointed through STRING, GEO2R, and Cytoscape. The competing endogenous RNA (ceRNA) network was constructed using miRTarBase, miRDB, and MiRcode databases. Gene Ontology (GO) and KEGG pathway enrichment analyses were performed via DAVID. Validation involved clinical OP samples from the Pakistani population, with Real-Time Quantitative Polymerase Chain Reaction (RT-qPCR) assessing hub gene expression. RESULTS: A total of 2124 differentially expressed genes (DEGs) were identified between OP and normal samples in GSE35959. The selected hub genes among these DEGs were Splicing Factor 3a Subunit 1 (SF3A1), Ataxin 2 Like (ATXN2L), Heat Shock Protein 90 Beta Family Member 1 (HSP90B1), Cluster of Differentiation 74 (CD74), DExH-Box Helicase 29 (DHX29), ALG5 Dolichyl-Phosphate Beta-Glucosyltransferase (ALG5), NudC Domain Containing 2 (NUDCD2), and Ras-related protein Rab-2A (RAB2A). Expression validation of these genes on the Pakistani OP patients revealed significant up-regulation of SF3A1, ATXN2L, and CD74 and significant (P < 0.05) down-regulation of HSP90B1, DHX29, ALG5, NUDCD2, and RAB2A in OP patients. Receiver operating characteristic (ROC) analysis demonstrated that these hub genes displayed considerable diagnostic accuracy for detecting OP. The ceRNA network analysis of the hub genes revealed some important hub genes' regulatory miRNAs and lncRNAs. Via KEGG analysis, hub genes were found to be enriched in N-Glycan biosynthesis, Thyroid hormone synthesis, IL-17 signaling pathway, Prostate cancer, AMPK signaling pathway, Spliceosome, Estrogen signaling pathway, and Fluid shear stress and atherosclerosis, etc., pathways. CONCLUSION: The identified eight hub genes in the present study could reliably distinguish OP patients from normal individuals, which may provide novel insight into the diagnostic research of OP.

10.
Front Pharmacol ; 15: 1372399, 2024.
Article in English | MEDLINE | ID: mdl-38725663

ABSTRACT

Bone is a highly dynamic organ that changes with the daily circadian rhythm. During the day, bone resorption is suppressed due to eating, while it increases at night. This circadian rhythm of the skeleton is regulated by gut hormones. Until now, gut hormones that have been found to affect skeletal homeostasis include glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), and peptide YY (PYY), which exerts its effects by binding to its cognate receptors (GLP-1R, GLP-2R, GIPR, and Y1R). Several studies have shown that GLP-1, GLP-2, and GIP all inhibit bone resorption, while GIP also promotes bone formation. Notably, PYY has a strong bone resorption-promoting effect. In addition, gut microbiota (GM) plays an important role in maintaining bone homeostasis. This review outlines the roles of GLP-1, GLP-2, GIP, and PYY in bone metabolism and discusses the roles of gut hormones and the GM in regulating bone homeostasis and their potential mechanisms.

11.
Biomater Sci ; 12(12): 3193-3201, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38747322

ABSTRACT

Considering the shortcomings of known medical hemostatic materials such as bone wax for bleeding bone management, it is essential to develop alternative bone materials capable of efficient hemostasis and bone regeneration and adaptable to clinical surgical needs. Thus, in the current work, a calcium sulfate hemihydrate and starch-based composite paste was developed and optimized. Firstly, it was found that the use of hydroxypropyl distarch phosphate (HDP) coupled with pregelatinization could generate an injectable, malleable and self-hardening paste with impressive anti-collapse ability in a dynamic aqueous environment, suggesting its potential applicability in both open and minimally invasive clinical practice. The as-hardened matrix exhibited a compressive strength of up to 61.68 ± 5.13 MPa compared to calcium sulfate cement with a compressive strength of 15.16 ± 2.42 MPa, making it a promising candidate for the temporary mechanical stabilization of bone defects. Secondly, the as-prepared paste revealed superior hemostasis and bone regenerative capabilities compared to calcium sulfate cement and bone wax, with greatly enhanced bleeding management and bone healing outcomes when subjected to testing in in vitro and in vivo models. In summary, our results confirmed that calcium sulfate bone cement reinforced with the selected starch can act as a reliable platform for bleeding bone treatment, overcoming the limitations of traditional bone hemostatic agents.


Subject(s)
Bone Cements , Calcium Sulfate , Bone Cements/chemistry , Bone Cements/pharmacology , Calcium Sulfate/chemistry , Calcium Sulfate/pharmacology , Animals , Bone Regeneration/drug effects , Hemorrhage/drug therapy , Starch/chemistry , Starch/analogs & derivatives , Starch/pharmacology , Mice , Hemostatics/pharmacology , Hemostatics/chemistry , Hemostatics/administration & dosage , Compressive Strength , Phosphates/chemistry , Male , Gelatin/chemistry , Rats , Rabbits
12.
J Biol Chem ; 300(6): 107379, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38762184

ABSTRACT

Bacterial RecJ exhibits 5'→3' exonuclease activity that is specific to ssDNA; however, archaeal RecJs show 5' or 3' exonuclease activity. The hyperthermophilic archaea Methanocaldococcus jannaschii encodes the 5'-exonuclease MjRecJ1 and the 3'-exonuclease MjRecJ2. In addition to nuclease activity, archaeal RecJ interacts with GINS, a structural subcomplex of the replicative DNA helicase complex. However, MjRecJ1 and MjRecJ2 do not interact with MjGINS. Here, we report the structural basis for the inability of the MjRecJ2 homologous dimer to interact with MjGINS and its efficient 3' hydrolysis polarity for short dinucleotides. Based on the crystal structure of MjRecJ2, we propose that the interaction surface of the MjRecJ2 dimer overlaps the potential interaction surface for MjGINS and blocks the formation of the MjRecJ2-GINS complex. Exposing the interaction surface of the MjRecJ2 dimer restores its interaction with MjGINS. The cocrystal structures of MjRecJ2 with substrate dideoxynucleotides or product dCMP/CMP show that MjRecJ2 has a short substrate binding patch, which is perpendicular to the longer patch of bacterial RecJ. Our results provide new insights into the function and diversification of archaeal RecJ/Cdc45 proteins.

13.
Sci Rep ; 14(1): 12234, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806556

ABSTRACT

Prolyl 4-hydroxylases (P4Hs) are a family of key modifying enzymes in collagen synthesis. P4Hs have been confirmed to be closely associated with tumor occurrence and development. However, the expression of P4Hs in head and neck cancer (HNSC) as well as its relationship with prognosis and tumor immunity infiltration has not yet been analyzed. We investigated the transcriptional expression, survival data, and immune infiltration of P4Hs in patients with HNSC from multiple databases. P4H1-3 expression was significantly higher in HNSC tumor tissues than in normal tissues. Moreover, P4HA1 and P4HA2 were associated with tumor stage, patient prognosis, and immune cell infiltration. P4HA3 was related to patient prognosis and immune cell infiltration. Correlation experiments confirmed that P4HA1 may serve as a prognosis biomarker and plays a role in the progression of nasopharyngeal carcinoma. These findings suggest that P4HA1-3 may be a novel biomarker for the prognosis and treatment of HNSC, which is expected to support the development of new therapies for patients with head and neck tumors and improve patient outcomes.


Subject(s)
Biomarkers, Tumor , Head and Neck Neoplasms , Immunotherapy , Procollagen-Proline Dioxygenase , Humans , Biomarkers, Tumor/metabolism , Prognosis , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/metabolism , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/diagnosis , Immunotherapy/methods , Procollagen-Proline Dioxygenase/metabolism , Procollagen-Proline Dioxygenase/genetics , Gene Expression Regulation, Neoplastic , Female , Male , Nasopharyngeal Carcinoma/therapy , Nasopharyngeal Carcinoma/immunology , Nasopharyngeal Carcinoma/diagnosis , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/mortality
14.
bioRxiv ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38798623

ABSTRACT

Condensates formed by intrinsically disordered proteins mediate a myriad of cellular processes and are linked to pathological conditions including neurodegeneration. Rules of how different types of amino acids (e.g., π-π pairs) dictate the physical properties of biomolecular condensates are emerging, but our understanding of the roles of different amino acids is far from complete. Here we studied condensates formed by tetrapeptides of the form XXssXX, where X is an amino acid and ss represents a disulfide bond along the backbone. Eight peptides form four types of condensates at different concentrations and pH values: droplets (X = F, L, M, P, V, A); amorphous dense liquids (X = L, M, P, V, A); amorphous aggregates (X = W), and gels (X = I, V, A). The peptides exhibit enormous differences in phase equilibrium and material properties, including a 368-fold range in the threshold concentration for phase separation and a 3856-fold range in viscosity. All-atom molecular dynamics simulations provide physical explanations of these results. The present work also reveals widespread critical behaviors, including critical slowing down manifested by the formation of amorphous dense liquids and critical scaling obeyed by fusion speed, with broad implications for condensate function.

15.
Breast Cancer ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630392

ABSTRACT

Triple-negative breast cancer (TNBC) is a highly heterogeneous tumor lacking estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) expression. It has higher aggressiveness and metastasis than other subtypes, with limited effective therapeutic strategies, leading to a poor prognosis. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway is prevalently over-activated in human cancers and contributes to breast cancer (BC) growth, survival, proliferation, and angiogenesis, which could be an interesting therapeutic target. This review summarizes the PI3K/AKT/mTOR signaling pathway activation mechanism in TNBC and discusses the relationship between its activation and various TNBC subtypes. We also report the latest clinical studies on kinase inhibitors related to this pathway for treating TNBC. Our review discusses the issues that need to be addressed in the clinical application of these inhibitors.

16.
BMC Cancer ; 24(1): 444, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600507

ABSTRACT

BACKGROUND: Transforming growth factor-ß (TGF-ß) is a cytokine with multiple functions, including cell growth regulation, extracellular matrix production, angiogenesis homeostasis adjustment and et al. TGF-ß pathway activation promotes tumor metastasis/progression and mediates epithelial-mesenchymal transmission suppressing immunosurveillance in advanced tumors. GFH018, a small molecule inhibitor blocking TGF-ß signal transduction, inhibits the progression and/or metastasis of advanced cancers. This first-in-human study evaluated the safety, tolerability, pharmacokinetics (PK), and efficacy of GFH018 monotherapy in patients with advanced solid tumors. METHODS: This phase I, open-label, multicenter study used a modified 3+3 dose escalation and expansion design. Adult patients with advanced solid tumors failing the standard of care were enrolled. Starting at 5 mg, eight dose levels up to 85 mg were evaluated. Patients received GFH018 BID (14d-on/14d-off) starting on the 4th day after a single dose on cycle 1, day 1. Subsequent cycles were defined as 28 days. The study also explored the safety of 85 mg BID 7d-on/7d-off. Adverse events were graded using NCI criteria for adverse events (NCI-CTCAE v5.0). PK was analyzed using a noncompartmental method. Efficacy was evaluated using RECIST 1.1. Blood samples were collected for biomarker analysis. RESULTS: Fifty patients were enrolled and received at least one dose of GFH018. No dose-limiting toxicity occurred, and the maximum tolerated dose was not reached. Forty-three patients (86.0%) had at least one treatment-related adverse event (TRAE), and three patients (6.0%) had ≥ G3 TRAEs. The most common TRAEs (any grade/grade ≥3) were AST increased (18%/0%), proteinuria (14%/2%), anemia (14%/2%), and ALT increased (12%/0%). No significant cardiotoxicity or bleeding was observed. GFH018 PK was linear and dose-independent, with a mean half-life of 2.25-8.60 h from 5 - 85 mg. Nine patients (18.0%) achieved stable disease, and one patient with thymic carcinoma achieved tumor shrinkage, with the maximum target lesion decreased by 18.4%. Serum TGF-ß1 levels were not associated with clinical responses. The comprehensive recommended dose for Phase II was defined as 85 mg BID 14d-on/14d-off. CONCLUSIONS: GFH018 monotherapy presented a favorable safety profile without cardiac toxicity or bleeding. Modest efficacy warrants further studies, including combination strategies. TRIAL REGISTRATION: ClinicalTrial. gov ( https://www. CLINICALTRIALS: gov/ ), NCT05051241. Registered on 2021-09-02.


Subject(s)
Neoplasms , Receptors, Transforming Growth Factor beta , Adult , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Response Evaluation Criteria in Solid Tumors , Transforming Growth Factor beta , Receptors, Transforming Growth Factor beta/antagonists & inhibitors
17.
Gels ; 10(4)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38667669

ABSTRACT

In this study, the effect of different starches from corn, potato and pea containing varying amylose/amylopectin ratios on the textural and rehydration properties of extruded peanut protein gel particles were investigated. Results showed that textural and rehydration properties of peanut protein extruded with corn starch, potato starch and amylopectin are slightly inferior to those of peanut protein with pea starch extrudates. The addition of pea starch led to an increase in the pore structure of the peanut protein extrudates and improved their water absorption index, simultaneously reducing the hardness and density. Pea starch, as a natural water-absorbing expansion material, helped peanut protein to form cross-linked gel polymers that bind more water molecules, in addition to further polymerization with peanut protein, which made the protein secondary structure became disordered. These changes directly affected the textural properties of the extrudates. In addition, the blended system of starches and peanut protein tended to form more elastic solids, which affected the expansion of the extrudates. These findings indicate that starch can effectively improve the poor expansion of proteins, making it suitable for use in the production of plant protein-based foods.

18.
Environ Pollut ; 349: 123927, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38582184

ABSTRACT

The recovery phase of mangrove seedlings in coastal wetland ecosystems can be negatively affected by exposure to external pollutants. This study aimed to investigate the impact of microplastics (MPs) influx, specifically polystyrene (PS) and polymethyl methacrylate (PMMA), on the growth of Aegiceras corniculatum seedlings and their accumulation of heavy metals (HMs). PS and PMMA significantly increased HMs accumulation (up to 21.0-548%), particularly in the roots of seedlings, compared to the control treatment (CK). Additionally, elevated activities of malondialdehyde and catalase enzymes were observed in the leaves of seedlings, while peroxidase enzyme activity decreased. Topological analysis of the root sediment microbiota coexistence network revealed that the modularization data increased from 0.69 (CK treatment) to 1.07 (PS treatment) and 5.11 (PMMA treatment) under the combined stress of MPs and HMs. This suggests that the introduction of MPs intensifies microbial modularization. The primary cause of increased HMs accumulation in plants is the MPs input, which influences the secretion of organic acids by plants and facilitates the shift of HMs in sediment to bioavailable states. Furthermore, changes in microbial clustering may also contribute to the elevated HMs accumulation in plants. This study provides valuable insights into the effects of external pollutants on mangrove seedlings and offers new perspectives for the preservation and restoration of mangrove coastal wetlands.


Subject(s)
Metals, Heavy , Microplastics , Seedlings , Water Pollutants, Chemical , Wetlands , Metals, Heavy/metabolism , Water Pollutants, Chemical/metabolism , Seedlings/metabolism , Microplastics/metabolism , Environmental Monitoring/methods , Primulaceae/metabolism , Geologic Sediments/chemistry
19.
Mol Cell Proteomics ; 23(6): 100770, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38641226

ABSTRACT

Inhalation of crystalline silica dust induces incurable lung damage, silicosis, and pulmonary fibrosis. However, the mechanisms of the lung injury remain poorly understood, with limited therapeutic options aside from lung transplantation. Posttranslational modifications can regulate the function of proteins and play an important role in studying disease mechanisms. To investigate changes in posttranslational modifications of proteins in silicosis, combined quantitative proteome, acetylome, and succinylome analyses were performed with lung tissues from silica-injured and healthy mice using liquid chromatography-mass spectrometry. Combined analysis was applied to the three omics datasets to construct a protein landscape. The acetylation and succinylation of the key transcription factor STAT1 were found to play important roles in the silica-induced pathophysiological changes. Modulating the acetylation level of STAT1 with geranylgeranylacetone effectively inhibited the progression of silicosis. This report revealed a comprehensive landscape of posttranslational modifications in silica-injured mouse and presented a novel therapeutic strategy targeting the posttranslational level for silica-induced lung diseases.

20.
bioRxiv ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38585905

ABSTRACT

We present a method, FMAPS(q), for calculating the structure factor, S(q), of a protein solution, by extending our fast Fourier transform-based modeling of atomistic protein-protein interactions (FMAP) approach. The interaction energy consists of steric, nonpolar attractive, and electrostatic terms that are additive among all pairs of atoms between two protein molecules. In the present version, we invoke the free-rotation approximation, such that the structure factor is given by the Fourier transform of the protein center-center distribution function gC(R). At low protein concentrations, gC(R) can be approximated as e-ßW(R), where W(R) is the potential of mean force along the center-center distance R. We calculate W(R) using FMAPB2, a member of the FMAP class of methods that is specialized for the second virial coefficient [Qin and Zhou, J Phys Chem B 123 (2019) 8203-8215]. For higher protein concentrations, we obtain S(q) by a modified random-phase approximation, which is a perturbation around the steric-only energy function. Without adjusting any parameters, the calculated structure factors for lysozyme and bovine serum albumin at various ionic strengths, temperatures, and protein concentrations are all in reasonable agreement with those measured by small-angle X-ray or neutron scattering. This initial success motivates further developments, including removing approximations and parameterizing the interaction energy function.

SELECTION OF CITATIONS
SEARCH DETAIL
...