Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Arch Toxicol ; 91(1): 495-507, 2017 Jan.
Article in English | MEDLINE | ID: mdl-26979077

ABSTRACT

Food contamination by the trichothecene mycotoxin deoxynivalenol (DON, vomitoxin) has the potential to adversely affect animal and human health by suppressing food intake and impairing growth. In mice, the DON-induced anorectic response results from aberrant satiety hormone secretion by enteroendocrine cells (EECs) of the gastrointestinal tract. Recent in vitro studies in the murine STC-1 EEC model have linked DON-induced satiety hormone secretion to activation of calcium-sensing receptor (CaSR), a G-coupled protein receptor, and transient receptor potential ankyrin-1 (TRPA1), a TRP channel. However, it is unknown whether similar mechanisms mediate DON's anorectic effects in vivo. Here, we tested the hypothesis that DON-induced food refusal and satiety hormone release in the mouse are linked to activation of CaSR and TRPA1. Oral treatment with selective agonists for CaSR (R-568) or TRPA1 (allyl isothiocyanate (AITC)) suppressed food intake in mice, and the agonist's effects were suppressed by pretreatment with corresponding antagonists NPS-2143 or ruthenium red (RR), respectively. Importantly, NPS-2143 or RR inhibited both DON-induced food refusal and plasma elevations of the satiety hormones cholecystokinin (CCK) and peptide YY3-36 (PYY3-36); cotreatment with both antagonists additively suppressed both anorectic and hormone responses to DON. Taken together, these in vivo data along with prior in vitro findings support the contention that activation of CaSR and TRPA1 contributes to DON-induced food refusal by mediating satiety hormone exocytosis from EEC.


Subject(s)
Anorexia/chemically induced , Appetite Depressants/toxicity , Environmental Pollutants/toxicity , Models, Biological , Receptors, G-Protein-Coupled/agonists , Transient Receptor Potential Channels/agonists , Trichothecenes/toxicity , Animals , Anorexia/metabolism , Anorexia/prevention & control , Appetite Depressants/chemistry , Appetite Stimulants/therapeutic use , Behavior, Animal/drug effects , Cholecystokinin/agonists , Cholecystokinin/antagonists & inhibitors , Cholecystokinin/blood , Drug Therapy, Combination , Energy Intake/drug effects , Environmental Pollutants/antagonists & inhibitors , Female , Peptide Fragments/agonists , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/blood , Peptide YY/agonists , Peptide YY/antagonists & inhibitors , Peptide YY/blood , Random Allocation , Receptors, Calcium-Sensing , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/metabolism , Satiety Response/drug effects , TRPA1 Cation Channel , Transient Receptor Potential Channels/antagonists & inhibitors , Transient Receptor Potential Channels/metabolism , Trichothecenes/antagonists & inhibitors
2.
Toxicol Sci ; 155(1): 32-42, 2017 01.
Article in English | MEDLINE | ID: mdl-27667315

ABSTRACT

The common foodborne mycotoxin deoxynivalenol (DON, vomitoxin) can negatively impact animal and human health by causing food refusal and vomiting. Gut enteroendocrine cells (EECs) secrete hormones that mediate DON's anorectic and emetic effects. In prior work utilizing a cloned EEC model, our laboratory discovered that DON-induced activation of calcium-sensing receptor (CaSR), a G-coupled protein receptor (GPCR), and transient receptor ankyrin-1 (TRPA1), a transient receptor potential (TRP) channel, drives Ca2+-mediated hormone secretion. Consistent with these in vitro findings, CaSR and TRPA1 mediate DON-induced satiety hormone release and food refusal in the mouse, an animal model incapable of vomiting. However, the roles of this GPCR and TRP in DON's emetic effects remain to be determined. To address this, we tested the hypothesis that DON triggers emesis in mink by activating CaSR and TRPA1. Oral gavage with selective agonists for CaSR (R-568) or TRPA1 (allyl isothiocyanate; AITC) rapidly elicited emesis in the mink in dose-dependent fashion. Oral pretreatment of the animals with the CaSR antagonist NPS-2143 or the TRP antagonist ruthenium red (RR), respectively, inhibited these responses. Importantly, DON-induced emesis in mink was similarly inhibited by oral pretreatment with NPS-2143 or RR. In addition, these antagonists suppressed concurrent DON-induced elevations in plasma peptide YY3-36 and 5-hydroxytryptamine-hormones previously demonstrated to mediate the toxin's emetic effects in mink. Furthermore, antagonist co-treatment additively suppressed DON-induced emesis and peptide YY 3-36 release. To summarize, the observations here strongly suggest that activation of CaSR and TRPA1 might have critical roles in DON-induced emesis.


Subject(s)
Ankyrins/physiology , Receptors, Calcium-Sensing/physiology , Trichothecenes/toxicity , Vomiting/chemically induced , Animals , Dose-Response Relationship, Drug , Female , Mice , Mink
3.
Arch Toxicol ; 90(4): 997-1007, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25855062

ABSTRACT

Trichothecene mycotoxins are a family of potent translational inhibitors that are associated with foodborne outbreaks of human and animal gastroenteritis in which vomiting is a clinical hallmark. Deoxynivalenol (DON, vomitoxin) and other Type B trichothecenes have been previously demonstrated to cause emesis in the mink (Neovison vison), and this response has been directly linked to secretion of both the satiety hormone peptide YY3-36 (PYY3-36) and neurotransmitter 5-hydroxytryptamine (5-HT). Here, we characterized the emetic responses in the mink to T-2 toxin (T-2) and HT-2 toxin (HT-2), two highly toxic Type A trichothecenes that contaminate cereals, and further compared these effects to those of emetine, a natural alkaloid that is used medicinally and also well known to block translation and cause vomiting. Following intraperitoneal (IP) and oral exposure, all three agents caused vomiting with evident dose-dependent increases in both duration and number of emetic events as well as decreases in latency to emesis. T-2 and HT-2 doses causing emesis in 50 % of treated animals (ED50s) were 0.05 and 0.02 mg/kg BW following IP and oral administration, respectively, whereas the ED50s for emetine were 2.0 and 1.0 mg/kg BW for IP and oral exposure, respectively. Importantly, oral administration of all three toxins elicited marked elevations in plasma concentrations of PYY3-36 and 5-HT that corresponded to emesis. Taken together, the results suggest that T-2 and HT-2 were much more potent than emetine and that emesis induction by all three translational inhibitors co-occurred with increases in circulating levels of PYY3-36 and 5-HT.


Subject(s)
Emetine/pharmacology , Peptide Fragments/blood , Peptide YY/blood , Serotonin/blood , T-2 Toxin/analogs & derivatives , T-2 Toxin/toxicity , Vomiting/chemically induced , Administration, Oral , Animals , Dose-Response Relationship, Drug , Emetics/administration & dosage , Emetics/pharmacology , Emetics/toxicity , Emetine/administration & dosage , Emetine/toxicity , Female , Mink , T-2 Toxin/administration & dosage
4.
Toxicol Rep ; 2: 238-251, 2015.
Article in English | MEDLINE | ID: mdl-25932382

ABSTRACT

Trichothecene mycotoxins, potent translational inhibitors that are associated with human food poisonings and damp-building illnesses, are of considerable concern to animal and human health. Food refusal is a hallmark of exposure of experimental animals to deoxynivalenol (DON) and other Type B trichothecenes but less is known about the anorectic effects of foodborne Type A trichothecenes (e.g., T-2 toxin, HT-2 toxin), airborne Type D trichothecenes (e.g. satratoxin G [SG]) or functionally analogous metabolites that impair protein synthesis. Here, we utilized a well-described mouse model of food intake to compare the anorectic potencies of T-2 toxin, HT-2 toxin, and SG to that of emetine, a medicinal alkaloid derived from ipecac that inhibits translation. Intraperitoneal (IP) administration with T-2 toxin, HT-2 toxin, emetine and SG evoked anorectic responses that occurred within 0.5 h that lasted up to 96, 96, 3 and 96 h, respectively, with lowest observed adverse effect levels (LOAELs) being 0.1, 0.1, 2.5 and 0.25 mg/kg BW, respectively. When delivered via natural routes of exposure, T-2 toxin, HT-2 toxin, emetine (oral) and SG (intranasal) induced anorectic responses that lasted up to 48, 48, 3 and 6 h, respectively with LOAELs being 0.1, 0.1, 0.25, and 0.5 mg/kg BW, respectively. All four compounds were generally much more potent than DON which was previously observed to have LOAELs of 1 and 2.5 mg/kg BW after IP and oral dosing, respectively. Taken together, these anorectic potency data will be valuable in discerning the relative risks from trichothecenes and other translational inhibitors of natural origin.

5.
Toxicol Sci ; 145(2): 407-17, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25787141

ABSTRACT

Food refusal is a hallmark of exposure of experimental animals to the trichothecene mycotoxin deoxynivalenol (DON), a common foodborne contaminant. Although studies in the mouse suggest that DON suppresses food intake by aberrantly inducing the release of satiety hormones from enteroendocrine cells (EECs) found in the gut epithelium, the underlying mechanisms for this effect are not understood. To address this gap, we employed the murine neuroendocrine tumor STC-1 cell line, a widely used EEC model, to test the hypothesis that DON-induced hormone exocytosis is mediated by G protein-coupled receptor (GPCR)-mediated Ca(2+) signaling. The results indicate for the first time that DON elicits Ca(2)-dependent secretion of cholecystokinin (CCK) and glucagon-like peptide-1(7-36) amide (GLP-1), hormones that regulate food intake and energy homeostasis and that are products of 2 critical EEC populations--I cells of the small intestine and L cells of the large intestine, respectively. Furthermore, these effects were mediated by the GPCR Ca(2+)-sensing receptor (CaSR) and involved the following serial events: (1)PLC-mediated activation of the IP3 receptor and mobilization of intracellular Ca(2+) stores, (2) activation of transient receptor potential melastatin-5 ion channel and resultant L-type voltage-sensitive Ca(2+) channel-facilitated extracellular Ca(2+) entry, (3) amplification of extracellular Ca(2+) entry by transient receptor potential ankyrin-1 channel activation, and finally (4) Ca(2+)-driven CCK and GLP-1 excytosis. These in vitro findings provide a foundation for future investigation of mechanisms by which DON and other trichothecenes modulate EEC function in ex vivo and in vivo models.


Subject(s)
Cholecystokinin/metabolism , Enteroendocrine Cells/drug effects , Glucagon-Like Peptide 1/metabolism , Receptors, G-Protein-Coupled/drug effects , Transient Receptor Potential Channels/drug effects , Trichothecenes/toxicity , Animals , Calcium Channels, L-Type/metabolism , Calcium Signaling/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Enteroendocrine Cells/metabolism , Exocytosis/drug effects , Food Contamination , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Mice , RNA Interference , Receptors, Calcium-Sensing , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , TRPA1 Cation Channel , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism , Time Factors , Transfection , Transient Receptor Potential Channels/genetics , Transient Receptor Potential Channels/metabolism , Type C Phospholipases/metabolism
6.
Toxins (Basel) ; 6(12): 3406-25, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25521494

ABSTRACT

Double-stranded RNA (dsRNA)-activated protein kinase (PKR) is a critical upstream mediator of the ribotoxic stress response (RSR) to the trichothecene deoxynivalenol (DON) and other translational inhibitors. Here, we employed HeLa cell lysates to: (1) characterize PKR's interactions with the ribosome and ribosomal RNA (rRNA); (2) demonstrate cell-free activation of ribosomal-associated PKR and (3) integrate these findings in a unified model for RSR. Robust PKR-dependent RSR was initially confirmed in intact cells. PKR basally associated with 40S, 60S, 80S and polysome fractions at molar ratios of 7, 2, 23 and 3, respectively. Treatment of ATP-containing HeLa lysates with DON or the ribotoxins anisomycin and ricin concentration-dependently elicited phosphorylation of PKR and its substrate eIF2α. These phosphorylations could be blocked by PKR inhibitors. rRNA immunoprecipitation (RNA-IP) of HeLa lysates with PKR-specific antibody and sequencing revealed that in the presence of DON or not, the kinase associated with numerous discrete sites on both the 18S and 28S rRNA molecules, a number of which contained double-stranded hairpins. These findings are consistent with a sentinel model whereby multiple PKR molecules basally associate with the ribosome positioning them to respond to ribotoxin-induced alterations in rRNA structure by dimerizing, autoactivating and, ultimately, evoking RSR.


Subject(s)
Anisomycin/toxicity , Ricin/toxicity , Trichothecenes/toxicity , eIF-2 Kinase/metabolism , Cloning, Molecular , HeLa Cells , Humans , Phosphorylation , Protein Synthesis Inhibitors , RNA, Ribosomal, 18S/chemistry , RNA, Ribosomal, 28S/chemistry , Ribosomes/metabolism , Sequence Analysis, RNA , eIF-2 Kinase/genetics , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
7.
Toxicol Sci ; 142(1): 167-81, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25173790

ABSTRACT

The mycotoxin deoxynivalenol (DON) elicits robust anorectic and emetic effects in several animal species. However, less is known about the potential for naturally occurring and synthetic congeners of this trichothecene to cause analogous responses. Here we tested the hypothesis that alterations in DON structure found in the plant metabolite deoxynivalenol-3-glucoside (D3G) and two pharmacologically active synthetic DON derivatives, EN139528 and EN139544, differentially impact their potential to evoke food refusal and emesis. In a nocturnal mouse food consumption model, oral administration with DON, D3G, EN139528, or EN139544 at doses from 2.5 to 10 mg/kg BW induced anorectic responses that lasted up to 16, 6, 6, and 3 h, respectively. Anorectic potency rank orders were EN139544>DON>EN139528>D3G from 0 to 0.5 h but DON>D3G>EN139528>EN139544 from 0 to 3 h. Oral exposure to each of the four compounds at a common dose (2.5 mg/kg BW) stimulated plasma elevations of the gut satiety peptides cholecystokinin and to a lesser extent, peptide YY3-36 that corresponded to reduced food consumption. In a mink emesis model, oral administration of increasing doses of the congeners differentially induced emesis, causing marked decreases in latency to emesis with corresponding increases in both the duration and number of emetic events. The minimum emetic doses for DON, EN139528, D3G, and EN139544 were 0.05, 0.5, 2, and 5 mg/kg BW, respectively. Taken together, the results suggest that although all three DON congeners elicited anorectic responses that mimicked DON over a narrow dose range, they were markedly less potent than the parent mycotoxin at inducing emesis.


Subject(s)
Anorexia/chemically induced , Eating/drug effects , Glucosides/toxicity , Trichothecenes/toxicity , Vomiting/chemically induced , Animals , Anorexia/blood , Cholecystokinin/blood , Dose-Response Relationship, Drug , Female , Glucosides/chemistry , Intestinal Mucosa/metabolism , Intestines/drug effects , Mice, Inbred Strains , Mink , Molecular Structure , No-Observed-Adverse-Effect Level , Peptide Fragments/blood , Peptide YY/blood , Trichothecenes/chemistry , Vomiting/blood
8.
Toxicol Appl Pharmacol ; 278(2): 107-15, 2014 Jul 15.
Article in English | MEDLINE | ID: mdl-24793808

ABSTRACT

The foodborne mycotoxin deoxynivalenol (DON) induces a ribotoxic stress response in mononuclear phagocytes that mediate aberrant multi-organ upregulation of TNF-α, interleukins and chemokines in experimental animals. While other DON congeners also exist as food contaminants or pharmacologically-active derivatives, it is not known how these compounds affect expression of these cytokine genes in vivo. To address this gap, we compared in mice the acute effects of oral DON exposure to that of seven relevant congeners on splenic expression of representative cytokine mRNAs after 2 and 6h. Congeners included the 8-ketotrichothecenes 3-acetyldeoxynivalenol (3-ADON), 15-acetyldeoxynivalenol (15-ADON), fusarenon X (FX), nivalenol (NIV), the plant metabolite DON-3-glucoside (D3G) and two synthetic DON derivatives with novel satiety-inducing properties (EN139528 and EN139544). DON markedly induced transient upregulation of TNF-α IL-1ß, IL-6, CXCL-2, CCL-2 and CCL-7 mRNA expressions. The two ADONs also evoked mRNA expression of these genes but to a relatively lesser extent. FX induced more persistent responses than the other DON congeners and, compared to DON, was: 1) more potent in inducing IL-1ß mRNA, 2) approximately equipotent in the induction of TNF-α and CCL-2 mRNAs, and 3) less potent at upregulating IL-6, CXCL-2, and CCL-2 mRNAs. EN139528's effects were similar to NIV, the least potent 8-ketotrichothecene, while D3G and EN139544 were largely incapable of eliciting cytokine or chemokine mRNA responses. Taken together, the results presented herein provide important new insights into the potential of naturally-occurring and synthetic DON congeners to elicit aberrant mRNA upregulation of cytokines associated with acute and chronic trichothecene toxicity.


Subject(s)
Chemokines/biosynthesis , Cytokines/biosynthesis , Gene Expression Regulation , Inflammation Mediators/metabolism , RNA, Messenger/biosynthesis , Trichothecenes/administration & dosage , Trichothecenes/chemical synthesis , Up-Regulation , Administration, Oral , Animals , Chemokines/agonists , Chemokines/genetics , Cytokines/agonists , Cytokines/genetics , Female , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Inflammation Mediators/agonists , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , RNA, Messenger/agonists , Treatment Outcome , Up-Regulation/genetics , Up-Regulation/immunology
9.
Toxicol Sci ; 138(2): 278-89, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24385417

ABSTRACT

Cereal grain contamination by trichothecene mycotoxins is known to negatively impact human and animal health with adverse effects on food intake and growth being of particular concern. The head blight fungus Fusarium graminearum elaborates five closely related 8-ketotrichothecene congeners: (1) deoxynivalenol (DON), (2) 3-acetyldeoxynivalenol (3-ADON), (3) 15-acetyldeoxynivalenol (15-ADON), (4) fusarenon X (FX), and (5) nivalenol (NIV). While anorexia induction in mice exposed intraperitoneally to DON has been linked to plasma elevation of the satiety hormones cholecystokinin (CCK) and peptide YY3₋36 (PYY3₋36), the effects of oral gavage of DON or of other 8-keotrichothecenes on release of these gut peptides have not been established. The purpose of this study was to (1) compare the anorectic responses to the aforementioned 8-ketotrichothecenes following oral gavage at a common dose (2.5 mg/kg bw) and (2) relate these effects to changes plasma CCK and PYY3₋36 concentrations. Elevation of plasma CCK markedly corresponded to anorexia induction by DON and all other 8-ketotrichothecenes tested. Furthermore, the CCK1 receptor antagonist SR 27897 and the CCK2 receptor antagonist L-365,260 dose-dependently attenuated both CCK- and DON-induced anorexia, which was consistent with this gut satiety hormone being an important mediator of 8-ketotrichothecene-induced food refusal. In contrast to CCK, PYY3₋36 was moderately elevated by oral gavage with DON and NIV but not by 3-ADON, 15-ADON, or FX. Taken together, the results suggest that CCK plays a major role in anorexia induction following oral exposure to 8-ketotrichothecenes, whereas PYY3₋36 might play a lesser, congener-dependent role in this response.


Subject(s)
Anorexia/chemically induced , Cholecystokinin/blood , Mycotoxins/toxicity , Trichothecenes/toxicity , Administration, Oral , Animals , Anorexia/blood , Chemokines, CC , Female , Mice , Peptide Fragments/blood , Peptide YY/blood , Receptor, Cholecystokinin B/antagonists & inhibitors , Receptors, Cholecystokinin/antagonists & inhibitors
10.
Toxicol Sci ; 133(1): 186-95, 2013 May.
Article in English | MEDLINE | ID: mdl-23457120

ABSTRACT

Deoxynivalenol (DON, vomitoxin), a trichothecene mycotoxin produced by Fusarium sp. that frequently occurs in cereal grains, has been associated with human and animal food poisoning. Although a common hallmark of DON-induced toxicity is the rapid onset of emesis, the mechanisms for this adverse effect are not fully understood. Recently, our laboratory has demonstrated that the mink (Neovison vison) is a suitable small animal model for investigating trichothecene-induced emesis. The goal of this study was to use this model to determine the roles of two gut satiety hormones, peptide YY3-36 (PYY3-36) and cholecystokinin (CCK), and the neurotransmitter 5-hydroxytryptamine (5-HT) in DON-induced emesis. Following ip exposure to DON at 0.1 and 0.25mg/kg bw, emesis induction ensued within 15-30min and then persisted up to 120min. Plasma DON measurement revealed that this emesis period correlated with the rapid distribution and clearance of the toxin. Significant elevations in both plasma PYY3-36 (30-60min) and 5-HT (60min) but not CCK were observed during emesis. Pretreatment with the neuropeptide Y2 receptor antagonist JNJ-31020028 attenuated DON- and PYY-induced emesis, whereas the CCK1 receptor antagonist devezapide did not alter DON's emetic effects. The 5-HT3 receptor antagonist granisetron completely suppressed induction of vomiting by DON and the 5-HT inducer cisplatin. Granisetron pretreatment also partially blocked PYY3-36-induced emesis, suggesting a potential upstream role for this gut satiety hormone in 5-HT release. Taken together, the results suggest that both PYY3-36 and 5-HT play contributory roles in DON-induced emesis.


Subject(s)
Peptide Fragments/metabolism , Peptide YY/metabolism , Serotonin/metabolism , Trichothecenes/toxicity , Vomiting/chemically induced , Vomiting/metabolism , Animals , Antiemetics/administration & dosage , Antiemetics/pharmacology , Antiemetics/therapeutic use , Benzamides/administration & dosage , Benzamides/pharmacology , Benzamides/therapeutic use , Cholecystokinin/antagonists & inhibitors , Cholecystokinin/blood , Cholecystokinin/metabolism , Devazepide/administration & dosage , Devazepide/pharmacology , Devazepide/therapeutic use , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Granisetron/administration & dosage , Granisetron/pharmacology , Granisetron/therapeutic use , Mink , Peptide Fragments/antagonists & inhibitors , Peptide Fragments/blood , Peptide YY/antagonists & inhibitors , Peptide YY/blood , Piperazines/administration & dosage , Piperazines/pharmacology , Piperazines/therapeutic use , Serotonin/blood , Serotonin Antagonists/administration & dosage , Serotonin Antagonists/pharmacology , Serotonin Antagonists/therapeutic use , Time Factors , Trichothecenes/blood , Vomiting/blood , Vomiting/prevention & control
11.
Toxicol Sci ; 131(1): 153-63, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22968694

ABSTRACT

The trichothecene deoxynivalenol (DON), a common contaminant of cereal-based foods, is a ribotoxic mycotoxin known to activate innate immune cells in vivo and in vitro. Although it is recognized that DON induces transcription and mRNA stabilization of inflammation-associated mRNAs in mononuclear phagocytes, it is not known if this toxin affects translation of selected mRNA species in the cellular pool. To address this question, we employed a focused inflammation/autoimmunity PCR array to compare DON-induced changes in profiles of polysome-associated mRNA transcripts (translatome) to total cellular mRNA transcripts (transcriptome) in the RAW 264.7 murine macrophage model. Exposure to DON at 250 ng/ml (0.84 µM) for 6 h induced robust expression changes in inflammatory response genes including cytokines, cytokine receptors, chemokines, chemokine receptors, and transcription factors, with 73% of the changes being highly comparable within transcriptome and translatome populations. When expression changes of selected representative inflammatory response genes in the polysome and cellular mRNA pools were quantified in a follow-up study by real-time PCR, closely coordinated regulation of the translatome and transcriptome was confirmed; however, modest but significant differences in the relative expression of some genes within the two pools were also detectable. Taken together, DON's capacity to alter translation expression of inflammation-associated genes appears to be driven predominantly by selective transcription and mRNA stabilization that have been reported previously; however, a small subset of these genes appear to be further regulated at the translational level.


Subject(s)
Cytokines/genetics , Macrophages/drug effects , Protein Biosynthesis/drug effects , RNA, Messenger/genetics , Transcriptome/drug effects , Trichothecenes/toxicity , Animals , Cell Culture Techniques , Cell Line , Down-Regulation , Macrophages/immunology , Macrophages/metabolism , Mice , Protein Biosynthesis/immunology , Real-Time Polymerase Chain Reaction , Transcriptome/immunology , Up-Regulation
12.
Nutr Metab (Lond) ; 9(1): 109, 2012 Dec 05.
Article in English | MEDLINE | ID: mdl-23216800

ABSTRACT

BACKGROUND: Leptin-deficient ob/ob mice exhibit adipocyte hypertrophy and hyperplasia as well as elevated adipose tissue and systemic inflammation. Multipotent stem cells isolated from adult adipose tissue can differentiate into adipocytes ex vivo and thereby contribute toward increased adipocyte cell numbers, obesity, and inflamm ation. Currently, information is lacking regarding regulation of adipose stem cell numbers as well as leptin-induced inflammation and its signaling pathway in ob/ob mice. METHODS: Using leptin deficient ob/ob mice, we investigated whether leptin injection into ob/ob mice increases adipose stem cell numbers and adipose tissue inflammatory marker MCP-1 mRNA and secretion levels. We also determined leptin mediated signaling pathways in the adipose stem cells. RESULTS: We report here that adipose stem cell number is significantly increased following leptin injection in ob/ob mice and with treatment of isolated stem cells with leptin in vitro. Leptin also up-regulated MCP-1 secretion in a dose- and time-dependent manner. We further showed that increased MCP-1 mRNA levels were due to increased phosphorylation of Signal Transducer and Activator of Transcription 3 (STAT3) Ser727 but not STAT3 Tyr705 phosphorylation, suggesting differential regulation of MCP-1 gene expression under basal and leptin-stimulated conditions in adipose stem cells. CONCLUSIONS: Taken together, these studies demonstrate that leptin increases adipose stem cell number and differentially activates STAT3 protein resulting in up-regulation of MCP-1 gene expression. Further studies of mechanisms mediating adipose stem cell hyperplasia and leptin signaling in obesity are warranted and may help identify novel anti-obesity target strategies.

13.
Toxicol Appl Pharmacol ; 265(1): 10-8, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-23022514

ABSTRACT

The Type B trichothecene deoxynivalenol (DON), a ribotoxic mycotoxin known to contaminate cereal-based foods, induces ribosomal RNA (rRNA) cleavage in the macrophage via p38-directed activation of caspases. Here we employed the RAW 264.7 murine macrophage model to test the hypothesis that this rRNA cleavage pathway is similarly induced by other ribotoxins. Capillary electrophoresis confirmed that the antibiotic anisomycin (≥25ng/ml), the macrocylic trichothecene satratoxin G (SG) (≥10ng/ml) and ribosome-inactivating protein ricin (≥300ng/ml) induced 18s and 28s rRNA fragmentation patterns identical to that observed for DON. Also, as found for DON, inhibition of p38, double-stranded RNA-activated kinase (PKR) and hematopoietic cell kinase (Hck) suppressed MAPK anisomycin-induced rRNA cleavage, while, in contrast, their inhibition did not affect SG- and ricin-induced rRNA fragmentation. The p53 inhibitor pifithrin-µ and pan caspase inhibitor Z-VAD-FMK suppressed rRNA cleavage induced by anisomycin, SG and ricin, indicating that these ribotoxins shared with DON a conserved downstream pathway. Activation of caspases 8, 9 and 3 concurrently with apoptosis further suggested that rRNA cleavage occurred in parallel with both extrinsic and intrinsic pathways of programmed cell death. When specific inhibitors of cathepsins L and B (lysosomal cysteine cathepsins active at cytosolic neutral pH) were tested, only the former impaired anisomycin-, SG-, ricin- and DON-induced rRNA cleavage. Taken together, the data suggest that (1) all four ribotoxins induced p53-dependent rRNA cleavage via activation of cathepsin L and caspase 3, and (2) activation of p53 by DON and anisomycin involved p38 whereas SG and ricin activated p53 by an alternative mechanism.


Subject(s)
RNA Cleavage/drug effects , RNA, Ribosomal/drug effects , Trichothecenes/toxicity , Animals , Anisomycin/toxicity , Apoptosis/drug effects , Blotting, Western , Caspase 8/drug effects , Cathepsin L/pharmacology , Cells, Cultured , Enzyme Activation/drug effects , Mice , Mitogen-Activated Protein Kinases/metabolism , Nucleic Acid Synthesis Inhibitors/toxicity , Proto-Oncogene Proteins c-hck/metabolism , RNA, Ribosomal/isolation & purification , Ricin/toxicity , Trichothecenes/pharmacology , Tumor Suppressor Protein p53/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
14.
Toxicol Sci ; 127(2): 382-90, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22491426

ABSTRACT

The trichothecene mycotoxin deoxynivalenol (DON), a known translational inhibitor, induces ribosomal RNA (rRNA) cleavage. Here, we characterized this process relative to (1) specific 18S and 28S ribosomal RNA cleavage sites and (2) identity of specific upstream signaling elements in this pathway. Capillary electrophoresis indicated that DON at concentrations as low as 200 ng/ml evoked selective rRNA cleavage after 6 h and that 1000 ng/ml caused cleavage within 2 h. Northern blot analysis revealed that DON exposure induced six rRNA cleavage fragments from 28S rRNA and five fragments from 18S rRNA. When selective kinase inhibitors were used to identify potential upstream signals, RNA-activated protein kinase (PKR), hematopoietic cell kinase (Hck), and p38 were found to be required for rRNA cleavage, whereas c-Jun N-terminal kinase and extracellular signal-regulated kinase were not. Furthermore, rRNA fragmentation was suppressed by the p53 inhibitors pifithrin-α and pifithrin-µ as well as the pan caspase inhibitor Z-VAD-FMK. Concurrent apoptosis was confirmed by acridine orange/ethidium bromide staining and flow cytometry. DON activated caspases 3, 8, and 9, thus suggesting the possible coinvolvement of both extrinsic and intrinsic apoptotic pathways in rRNA cleavage. Satratoxin G (SG), anisomycin, and ricin also induced specific rRNA cleavage profiles identical to those of DON, suggesting that ribotoxins might share a conserved rRNA cleavage mechanism. Taken together, DON-induced rRNA cleavage is likely to be closely linked to apoptosis activation and appears to involve the sequential activation of PKR/Hck →p38→p53→caspase 8/9→caspase 3.


Subject(s)
Macrophages/drug effects , RNA Cleavage/drug effects , RNA Processing, Post-Transcriptional/drug effects , RNA Stability/drug effects , RNA, Ribosomal, 18S/metabolism , RNA, Ribosomal, 28S/metabolism , Signal Transduction/drug effects , Trichothecenes/toxicity , Animals , Apoptosis/drug effects , Blotting, Northern , Caspase Inhibitors , Caspases/metabolism , Cell Line , Cysteine Proteinase Inhibitors/pharmacology , Dose-Response Relationship, Drug , Electrophoresis, Capillary , Enzyme Activation , Flow Cytometry , Macrophages/metabolism , Macrophages/pathology , Mice , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-hck/antagonists & inhibitors , Proto-Oncogene Proteins c-hck/metabolism , Time Factors , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism , eIF-2 Kinase/antagonists & inhibitors , eIF-2 Kinase/metabolism , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism
15.
Dev Growth Differ ; 52(5): 433-55, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20507358

ABSTRACT

Vitamin A-deficient (VAD) quail embryos lack the vitamin A-active form, retinoic acid (RA) and are characterized by a phenotype that includes a grossly abnormal cardiovascular system that can be rescued by RA. Here we report that the transforming growth factor, TGFbeta2 is involved in RA-regulated cardiovascular development. In VAD embryos TGFbeta2 mRNA and protein expression are greatly elevated. The expression of TGFbeta receptor II is also elevated in VAD embryos but is normalized by treatment with TGFbeta2-specific antisense oligonucleotides (AS). Administration of this AS or an antibody specific for TGFbeta2 to VAD embryos normalizes posterior heart development and vascularization, while the administration of exogenous active TGFbeta2 protein to normal quail embryos mimics the excessive TGFbeta2 status of VAD embryos and induces VAD cardiovascular phenotype. In VAD embryos pSmad2/3 and pErk1 are not activated, while pErk2 and pcRaf are elevated and pSmad1/5/8 is diminished. We conclude that in the early avian embryo TGFbeta2 has a major role in the retinoic acid-regulated posterior heart morphogenesis for which it does not use Smad2/3 pathways, but may use other signaling pathways. Importantly, we conclude that retinoic acid is a critical negative physiological regulator of the magnitude of TGFbeta2 signals during vertebrate heart formation.


Subject(s)
Heart/embryology , Transforming Growth Factor beta2/metabolism , Tretinoin/physiology , Animals , Gene Expression Regulation, Developmental , Morphogenesis/drug effects , Quail/embryology , Receptors, Transforming Growth Factor beta/genetics , Receptors, Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta2/antagonists & inhibitors , Transforming Growth Factor beta2/genetics , Tretinoin/antagonists & inhibitors , Tretinoin/pharmacology , Vitamin A Deficiency/metabolism
16.
Am J Physiol Endocrinol Metab ; 293(5): E1153-8, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17726148

ABSTRACT

Studies showed that monocyte chemotactic protein-1 (MCP-1) concentrations are increased in obesity. In our current study, we demonstrate that plasma MCP-1 level in leptin-deficient ob/ob mice is significantly higher than in lean mice. Furthermore, we determined that basal adipose tissue MCP-1 mRNA levels are significantly higher in ob/ob mice compared with lean mice. To determine the mechanisms underlying obesity-associated increases in plasma and adipose tissue MCP-1 levels, we determined adipose tissue cell type sources of MCP-1 production. Our data show that adipose tissue stem cells (CD34(+)), macrophages (F4/80(+)), and stromal vascular fraction (SVF) cells express significantly higher levels of MCP-1 compared with adipocytes under both basal and lipopolysaccharide (LPS)-stimulated conditions. Furthermore, basal and LPS-induced MCP-1 secretion levels were the same for both adipose F4/80(+) and CD34(+) cells, whereas adipose CD34(+) cells have twofold higher cell numbers (30% of total SVF cells) compared with F4/80(+) macrophages (15%). Our data also show that CD34(+) cells from visceral adipose tissue depots secrete significantly higher levels of MCP-1 ex vivo when compared with CD34(+) cells from subcutaneous adipose tissue depots. Taken together, our data suggest that adipose CD34(+) stem cells may play an important role in obesity-associated increases in plasma MCP-1 levels.


Subject(s)
Adipocytes/metabolism , Adipose Tissue, White/metabolism , Chemokine CCL2/metabolism , Obesity/immunology , Stem Cells/metabolism , Adipocytes/cytology , Adipocytes/immunology , Adipose Tissue, White/cytology , Adipose Tissue, White/immunology , Animals , Antigens, CD34/immunology , Chemokine CCL2/blood , Chemokine CCL2/genetics , Chemokine CCL2/immunology , Enzyme-Linked Immunosorbent Assay , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Obesity/blood , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/cytology , Stem Cells/immunology
17.
Toxicol Sci ; 92(2): 445-55, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16687389

ABSTRACT

Activation of the innate immune system might predispose a host to toxicant-induced inflammation. In vitro macrophage models were employed to investigate the effects of preexposure to Toll-like receptor (TLR) agonists on induction of proinflammatory cytokine gene expression by the trichothecene mycotoxin deoxynivalenol (DON) and other toxicants. Priming of the murine RAW 264.7 macrophage line or peritoneal murine macrophages with the TLR4 agonist lipopolysaccharide (LPS) at 100 ng/ml for 4, 8, and 16 h significantly increased DON-induced IL-1beta, IL-6, and TNF-alpha mRNA expression as compared to LPS or DON alone. The minimum LPS concentration for sensitization of both cell types was 1 ng/ml. LPS priming also potentiated IL-1beta mRNA induction by DON in human whole-blood cultures, suggesting the relevance of the murine findings. As observed for LPS, preexposure to TLR agonists including zymosan (TLR2), poly (I:C) (TLR3), flagellin (TLR5), R848 (TLR7/8), and ODN1826 (TLR9) sensitized RAW 267.4 cells to DON-induced proinflammatory gene expression. Amplified proinflammatory mRNA expression was similarly demonstrated in LPS-sensitized RAW 264.7 cells exposed to the microbial toxins satratoxin G, Shiga toxin, and zearalenone as well as the anthropogenic toxicants nickel chloride, triphenyltin, 2,4-dinitrochlorobenzene, and 2,3,7,8-tetrachlorodibenzodioxin. The results suggest that prior TLR activation might render macrophages highly sensitive to subsequent induction of proinflammatory gene expression by xenobiotics with diverse mechanisms of action.


Subject(s)
Cytokines/biosynthesis , Macrophages/drug effects , Toll-Like Receptors/agonists , Trichothecenes/toxicity , Animals , Cell Line , Cytokines/genetics , Gene Expression Regulation/drug effects , Humans , Lipopolysaccharides , Macrophages/metabolism , Male , Mice , Mice, Inbred Strains , RNA, Messenger/biosynthesis , Shiga Toxin/toxicity , Transcriptional Activation , Zearalenone/toxicity
18.
J Nutr ; 136(2): 366-72, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16424113

ABSTRACT

The mycotoxin deoxynivalenol (DON) induces IgA nephropathy in mice by upregulating IL-6 expression, which is suppressed by (n-3) PUFA consumption. The purpose of this study was to test the hypothesis that consumption of the (n-3) PUFA docosahexaenoic acid (DHA) interferes with DON-induced transcriptional and post-transcriptional upregulation of IL-6 mRNA in murine macrophages. DON evoked expression of IL-6 mRNA and IL-6 heterogenous nuclear RNA (hnRNA), an indicator of ongoing IL-6 transcription, in macrophages elicited from mice fed control AIN-93G diet for 4 wk, whereas expression of both RNA species was suppressed in macrophages from mice fed AIN-93G modified to contain 30 g DHA/kg diet for the same time period. DON enhanced IL-6 mRNA stability similarly in macrophages from control and DHA-fed mice suggesting that (n-3) PUFA effects were not post-transcriptional. DON upregulated binding activity of cAMP response element binding protein (CREB) and activator protein (AP-1) to their respective consensus sequences in nuclear extracts from control-fed mice, whereas both activities were suppressed in nuclear extracts from DHA-fed mice. DON induced phosphorylation of CREB at Ser-133 and ATF1 at Ser-63 as well as intranuclear binding of phospho-CREB/ATF1 to the cis element of the IL-6 promoter in control macrophages, whereas both activities were inhibited in macrophages from DHA-fed mice. DHA consumption blocked DON-induced phosphorylation of the CREB kinase AKT. Inhibition of AKT suppressed both CREB/ATF1 phosphorylation and IL-6 transcription. These data suggest that DHA consumption suppresses DON-induced IL-6 transcription in macrophages in part by interfering with AKT-dependent phosphorylation and subsequent binding of CREB/ATF1 to the IL-6 promoter.


Subject(s)
Activating Transcription Factor 1/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Docosahexaenoic Acids/pharmacology , Interleukin-6/genetics , Macrophages/drug effects , Transcription, Genetic/drug effects , Trichothecenes/pharmacology , Animals , Cells, Cultured , Docosahexaenoic Acids/administration & dosage , Female , Gene Expression Regulation/drug effects , Macrophages/metabolism , Mice , Phospholipids/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , RNA Stability/drug effects , RNA, Messenger/genetics , Spleen/drug effects , Spleen/metabolism , Transcription, Genetic/genetics
19.
Toxicol Sci ; 87(1): 113-22, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15976193

ABSTRACT

Deoxynivalenol (DON) and other ribotoxic trichothecenes cause immune stimulation and suppression in leukocytes by upregulating gene expression and apoptosis, respectively. The purpose of this study was to test the hypothesis that MAPKs mediate both apoptosis and survival in DON-exposed macrophages. At concentrations which partially inhibit translation, DON induced phosphorylation of p38 and ERK 1/2 mitogen activated protein kinases within 15 min in RAW 264.7 macrophages and these effects lasted up to 3 h. DON-exposed cells exhibited marked caspase 3-dependent DNA fragmentation after 6 h which was suppressed and attenuated by the p38 inhibitor SB203580 and ERK inhibitor PD98059, respectively. DON readily induced the phosphorylation and activity of p53 and this was inhibitable by SB203580. DON exposure evoked BAX translocation to mitochondria and corresponding cytochrome C release but did not alter mitochondrial membrane potential. The p53 inhibitor PFTalpha reduced both DON-induced phosphorylation of p53 and p53 binding activity. Moreover, both PFTalpha and p53 siRNA transfection suppressed DON-induced caspase-3 activity and subsequent DNA fragmentation. Concurrent with p53 activation, DON activated two anti-apoptotic survival pathways as evidenced by both ERK-dependent p90 Rsk and AKT activation. Taken together, the results indicate that DON initiates competing apoptotic (p38/p53/Bax/Mitochondria/Caspase-3) and survival (ERK/AKT/p90Rsk/Bad) pathways in the macrophage.


Subject(s)
Apoptosis/drug effects , Macrophages/drug effects , Signal Transduction/drug effects , Trichothecenes/toxicity , Animals , Cell Line , Cell Survival/drug effects , Enzyme Activation/drug effects , Macrophages/physiology , Mice , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/physiology , Proto-Oncogene Proteins/physiology , Proto-Oncogene Proteins c-akt , Tumor Suppressor Protein p53/physiology
20.
Toxicol Sci ; 85(2): 916-26, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15772366

ABSTRACT

Trichothecene mycotoxins and other translational inhibitors activate mitogen-activated protein kinase (MAPKs) by a mechanism called the "ribotoxic stress response," which drives both cytokine gene expression and apoptosis in macrophages. The purpose of this study was to identify upstream kinases involved in the ribotoxic stress response using the trichothecene deoxynivalenol (DON) and the RAW 264.7 macrophage as models. DON (100 to 1000 ng/ml) dose-dependently induced phosphorylation of c-Jun N-terminal protein kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 MAPKs. MAPK phosphorylation in response to DON exposure occurred as early as 5 min, was maximal from 15 to 30 min, and lasted up to 8 h. Preincubation with inhibitors of protein kinase C, protein kinase A, or phospholipase C had no effect on DON-induced MAPK phosphorylation. In contrast, the Src family tyrosine kinase inhibitors, PP1 (4-amino-5-[4-methylphenyl)]-7-[t-butyl]pyrazolo[3,4-d]-pyrimidine) and, PP2 (4-amino-5-[4-chlorophenyl]-7-[t-butyl]pyrazolo[3,4-d]-pyrimidine) concentration-dependently impaired phosphorylation of all three MAPK families. PP1 suppressed DON-induced phosphorylation of the MAPK substrates c-jun, ATF-2, and p90(Rsk). MAPK phosphorylation by two other translational inhibitors, anisomycin and emetine, were similarly Src-dependent. PP1 reduced DON-induced increases in nuclear levels and binding activities of several transcription factors (NF-kappaB, AP-1, and C/EBP), which corresponded to decreases in TNF-alpha production, caspase-3 activation, and apoptosis. Tyrosine phosphorylation of hematopoeitic cell kinase (Hck), a Src found in macrophages, was detectable within 1 to 5 min after DON addition, and this was suppressed by PP1. Knockdown of Hck expression with siRNAs confirmed involvement of this Src in DON-induced TNF-alpha production and caspase activation. Taken together, activation of Hck and possibly other Src family tyrosine kinases are likely to be critical signals that precede both MAPK activation and induction of resultant downstream sequelae by DON and other ribotoxic stressors.


Subject(s)
Macrophages/drug effects , Protein-Tyrosine Kinases/physiology , Proto-Oncogene Proteins/physiology , Stress, Physiological/chemically induced , Trichothecenes/toxicity , Animals , Caspase 3 , Caspases/metabolism , Cell Nucleus/metabolism , DNA Fragmentation/drug effects , Electrophoretic Mobility Shift Assay , Enzyme Activation/drug effects , JNK Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Kinase 4 , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-hck , RNA, Small Interfering/pharmacology , Signal Transduction/drug effects , Stress, Physiological/pathology , Transcription Factors/metabolism , Tumor Necrosis Factor-alpha/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , src-Family Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...