Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
1.
J Am Heart Assoc ; 13(14): e034363, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38979786

ABSTRACT

BACKGROUND: Aging-associated left ventricular dysfunction promotes cardiopulmonary fibrogenic remodeling, Group 2 pulmonary hypertension (PH), and right ventricular failure. At the time of diagnosis, cardiac function has declined, and cardiopulmonary fibrosis has often developed. Here, we sought to develop a molecular positron emission tomography (PET)-magnetic resonance imaging (MRI) protocol to detect both cardiopulmonary fibrosis and fibrotic disease activity in a left ventricular dysfunction model. METHODS AND RESULTS: Left ventricular dysfunction was induced by transverse aortic constriction (TAC) in 6-month-old senescence-accelerated prone mice, a subset of mice that received sham surgery. Three weeks after surgery, mice underwent simultaneous PET-MRI at 4.7 T. Collagen-targeted PET and fibrogenesis magnetic resonance (MR) probes were intravenously administered. PET signal was computed as myocardium- or lung-to-muscle ratio. Percent signal intensity increase and Δ lung-to-muscle ratio were computed from the pre-/postinjection magnetic resonance images. Elevated allysine in the heart (P=0.02) and lungs (P=0.17) of TAC mice corresponded to an increase in myocardial magnetic resonance imaging percent signal intensity increase (P<0.0001) and Δlung-to-muscle ratio (P<0.0001). Hydroxyproline in the heart (P<0.0001) and lungs (P<0.01) were elevated in TAC mice, which corresponded to an increase in heart (myocardium-to-muscle ratio, P=0.02) and lung (lung-to-muscle ratio, P<0.001) PET measurements. Pressure-volume loop and echocardiography demonstrated adverse left ventricular remodeling, function, and increased right ventricular systolic pressure in TAC mice. CONCLUSIONS: Administration of collagen-targeted PET and allysine-targeted MR probes led to elevated PET-magnetic resonance imaging signals in the myocardium and lungs of TAC mice. The study demonstrates the potential to detect fibrosis and fibrogenesis in cardiopulmonary disease through a dual molecular PET-magnetic resonance imaging protocol.


Subject(s)
Disease Models, Animal , Fibrosis , Magnetic Resonance Imaging , Positron-Emission Tomography , Ventricular Dysfunction, Left , Animals , Positron-Emission Tomography/methods , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/physiopathology , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/metabolism , Magnetic Resonance Imaging/methods , Mice , Myocardium/pathology , Myocardium/metabolism , Pulmonary Fibrosis/diagnostic imaging , Pulmonary Fibrosis/physiopathology , Pulmonary Fibrosis/metabolism , Pulmonary Fibrosis/etiology , Ventricular Function, Left , Male , Lung/diagnostic imaging , Lung/pathology , Lung/physiopathology , Lung/metabolism , Multimodal Imaging/methods , Collagen/metabolism , Ventricular Remodeling , Lysine/analogs & derivatives
2.
Kidney Int ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901603

ABSTRACT

Imaging tools for kidney inflammation could improve care for patients suffering inflammatory kidney diseases by lessening reliance on percutaneous biopsy or biochemical tests alone. During kidney inflammation, infiltration of myeloid immune cells generates a kidney microenvironment that is oxidizing relative to normal kidney. Here, we evaluated whether magnetic resonance imaging (MRI) using the redox-active iron (Fe) complex Fe-PyC3A as an oxidatively activated probe could serve as a marker of kidney inflammation using mouse models of unilateral ischemia-reperfusion injury (IRI) and lupus nephritis (MRL-lpr mice). We imaged unilateral IRI in gp91phox knockout mice, which are deficient in the nicotinamide oxidase II (NOX2) enzyme required for myeloid oxidative burst, as loss of function control, and imaged MRL/MpJ mice as non-kidney involved lupus control. Gadoterate meglumine was used as a non-oxidatively activated control MRI probe. Fe-PyC3A safety was preliminarily examined following a single acute dose. Fe-PyC3A generated significantly greater MRI signal enhancement in the IRI kidney compared to the contralateral kidney in wild-type mice, but the effect was not observed in the NOX2-deficient control. Fe-PyC3A also generated significantly greater kidney enhancement in MRL-lpr mice compared to MRL/MpJ control. Gadoterate meglumine did not differentially enhance the IRI kidney over the contralateral kidney and did not differentially enhance the kidneys of MRL-lpr over MRL/MpJ mice. Fe-PyC3A was well tolerated at the highest dose evaluated, which was a 40-fold greater than required for imaging. Thus, our data indicate that MRI using Fe-PyC3A is specific to an oxidizing kidney environment shaped by activity of myeloid immune cells and support further evaluation of Fe-PyC3A for imaging kidney inflammation.

3.
Cancer Res ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38759082

ABSTRACT

Neoadjuvant therapy (NAT) is routinely used in pancreatic ductal adenocarcinoma (PDAC), but not all tumors respond to this treatment. Current clinical imaging techniques are not able to precisely evaluate and predict the response to neoadjuvant therapies over several weeks. A strong fibrotic reaction is a hallmark of a positive response, and during fibrogenesis allysine residues are formed on collagen proteins by the action of lysyl oxidases (LOX). Here we report the application of an allysine-targeted molecular magnetic resonance imaging (MRI) probe, MnL3, to provide an early, noninvasive assessment of treatment response in PDAC. Allysine increased 2- to 3-fold after one dose of NAT with FOLFIRINOX in sensitive human PDAC xenografts in mice. Molecular MRI with MnL3 could specifically detect and quantify fibrogenesis in PDAC xenografts. Comparing the MnL3 signal before and 3 days after one dose of FOLFIRINOX predicted subsequent treatment response. The MnL3 tumor signal increased by 70% from day 0 to day 3 in mice that responded to subsequent doses of FOLFIRINOX, while no signal increase was observed in FOLFIRINOX-resistant tumors. This study indicates the promise of allysine-targeted molecular MRI as a noninvasive tool to predict chemotherapy outcomes.

4.
Pulm Circ ; 14(1): e12356, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38500738

ABSTRACT

Compared to healthy volunteers, participants with post-acute sequelae of SARS-CoV-2 infection (PASC) demonstrated increased plasma levels of the prothrombotic protein NEDD9, which associated inversely with indices of pulmonary vascular function. This suggests persistent pulmonary vascular dysfunction may play a role in the pathobiology of PASC.

6.
Int J Radiat Oncol Biol Phys ; 118(5): 1228-1239, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38072325

ABSTRACT

PURPOSE: Radiation-induced lung injury (RILI) is a progressive inflammatory process seen after irradiation for lung cancer. The disease can be insidious, often characterized by acute pneumonitis followed by chronic fibrosis with significant associated morbidity. No therapies are approved for RILI, and accurate disease quantification is a major barrier to improved management. Here, we sought to noninvasively quantify RILI using a molecular imaging probe that specifically targets type 1 collagen in mouse models and patients with confirmed RILI. METHODS AND MATERIALS: Using a murine model of lung radiation, mice were imaged with EP-3533, a type 1 collagen probe, to characterize the development of RILI and to assess disease mitigation after losartan treatment. The human analog probe 68Ga-CBP8, targeting type 1 collagen, was tested on excised human lung tissue containing RILI and was quantified via autoradiography. 68Ga-CBP8 positron emission tomography was used to assess RILI in vivo in 6 human subjects. RESULTS: Murine models demonstrated that probe signal correlated with progressive RILI severity over 6 months. The probe was sensitive to mitigation of RILI by losartan. Excised human lung tissue with RILI had increased binding versus unirradiated control tissue, and 68Ga-CBP8 uptake correlated with collagen proportional area. Human imaging revealed significant 68Ga-CBP8 uptake in areas of RILI and minimal background uptake. CONCLUSIONS: These findings support the ability of a molecular imaging probe targeted at type 1 collagen to detect RILI in preclinical models and human disease, suggesting a role for targeted molecular imaging of collagen in the assessment of RILI.


Subject(s)
Lung Injury , Radiation Injuries , Humans , Animals , Mice , Lung Injury/diagnostic imaging , Lung Injury/etiology , Lung Injury/metabolism , Collagen Type I/metabolism , Gallium Radioisotopes/metabolism , Losartan/metabolism , Lung/radiation effects , Radiation Injuries/metabolism , Collagen , Molecular Imaging
7.
Magn Reson Med ; 91(4): 1512-1527, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38098305

ABSTRACT

PURPOSE: Guanidinium CEST is sensitive to metabolic changes and pH variation in ischemia, and it can offer advantages over conventional pH-sensitive amide proton transfer (APT) imaging by providing hyperintense contrast in stroke lesions. However, quantifying guanidinium CEST is challenging due to multiple overlapping components and a close frequency offset from water. This study aims to evaluate the applicability of a new rapid and model-free CEST quantification method using double saturation power, termed DSP-CEST, for isolating the guanidinium CEST effect from confounding factors in ischemia. To further reduce acquisition time, the DSP-CEST was combined with a quasi-steady state (QUASS) CEST technique to process non-steady-state CEST signals. METHODS: The specificity and accuracy of the DSP-CEST method in quantifying the guanidinium CEST effect were assessed by comparing simulated CEST signals with/without the contribution from confounding factors. The feasibility of this method for quantifying guanidinium CEST was evaluated in a rat model of global ischemia induced by cardiac arrest and compared to a conventional multiple-pool Lorentzian fit method. RESULTS: The DSP-CEST method was successful in removing all confounding components and quantifying the guanidinium CEST signal increase in ischemia. This suggests that the DSP-CEST has the potential to provide hyperintense contrast in stroke lesions. Additionally, the DSP-CEST was shown to be a rapid method that does not require the acquisition of the entire or a portion of the CEST Z-spectrum that is required in conventional model-based fitting approaches. CONCLUSION: This study highlights the potential of DSP-CEST as a valuable tool for rapid and specific detection of viable tissues.


Subject(s)
Brain , Stroke , Rats , Animals , Brain/metabolism , Magnetic Resonance Imaging/methods , Guanidine/metabolism , Rodentia , Ischemia/diagnostic imaging , Ischemia/metabolism , Amides/metabolism
8.
Article in English | MEDLINE | ID: mdl-38082917

ABSTRACT

Recent development of affordable, portable and self-administrable electrical impedance tomography (EIT) system demonstrated the feasibility of using standalone EIT and subject's anthropometrics to predict the gold standard spirometry indicators for lung-function assessment. Compared to spirometry, the system showed the advantage of providing spatial mapping of the spirometry indicators. Nevertheless, the previous study was limited to healthy subjects. Here, we recruited (N=88): 47 lung disease patients and 41 healthy controls to perform simultaneous EIT and spirometry measurements to validate the capabilities of the system. Lung disease patients include 13 interstitial lung disease (ILD), 10 asthma, 8 chronic obstructive pulmonary disease (COPD), 8 bronchiectasis, and 8 with other diseases including left pneumonectomy, lung cancer, lung tumor, lymphangioleiomyomatosis, motor neuron disease, heart failure and bronchiolitis obliterans syndrome. The results showed significant correlation of the predicted global spirometry indicators (p<0.0001) and significant distinguishability between most disease groups and healthy subjects demonstrating the capability of the EIT system in diagnostic screening. Furthermore, the regional mapping of the spirometry indicators is evaluated and shown to be distinct for each disease group, providing an additional dimension for medical professionals to diagnose and monitor lung disease patients.Clinical Relevance- This establishes the significance of EIT-based global and regional indicators for assessing lung function on lung disease patients.


Subject(s)
Lung Neoplasms , Pulmonary Disease, Chronic Obstructive , Humans , Electric Impedance , Tomography/methods , Tomography, X-Ray Computed , Pulmonary Disease, Chronic Obstructive/diagnosis , Lung/diagnostic imaging
9.
Article in English | MEDLINE | ID: mdl-38083484

ABSTRACT

This study demonstrates the feasibility of predicting NAFLD using multi-spectral electrical impedance tomography (EIT), group source separation, constant reference EIT and anthropometric measures. Vibration-controlled Transient Elastography (VCTE) Controlled Attenuated Parameter (CAP; n = 121) and magnetic resonance imaging-proton density fat fraction (MRI-PDFF; n = 34) achieved a sensitivity of 70.9% and specificity of 73.8% with our CAP predicting model and sensitivity of 77.8% and specificity of 80.0% with our MRI-PDFF predicting model. In summary, a portable EIT can be a cost-effective and self-administrable alternative for widespread home-based and community-based diagnostic screening and treatment monitoring of NAFLD.Clinical Relevance- Portable multi-spectral EIT system has the sensitivity and specificity to potentially unlock biomedical imaging in telemedicine for home-based and community-based screening, staging and monitoring for NAFLD.


Subject(s)
Elasticity Imaging Techniques , Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/pathology , Electric Impedance , Magnetic Resonance Imaging/methods , Elasticity Imaging Techniques/methods
10.
Article in English | MEDLINE | ID: mdl-38083546

ABSTRACT

Chronic kidney disease (CKD) is an escalating global health concern, and non-invasive means for early CKD detection is eagerly awaited. Here, we explore the potential of using home-based frequency-difference electrical impedance tomography (fdEIT) to evaluate CKD based on bio-conductivity characteristics. We performed bio-conductivity measurement in vivo paired with standard estimated glomerular filtration rate (eGFR) measurements on a N=126 CKD patients by EIT and traditional blood and urine tests, respectively. We developed an EIT processing pipeline that extracts the kidney regions from EIT images. We further developed a regression model and a CKD classification scheme. Our results showed a significant correlation between EIT-features and eGFR, and the classification scheme shows sensitivity and specificity of 76.2% and 74.6% respectively considering stages 1 and 2 CKD versus stages 3, 4 and 5 CKD. These results suggest the feasibility of EIT to be used as a portable, self-administrated and home-based approach for CKD early diagnostic screening and longitudinal monitoring.Clinical Relevance-The results presented here demonstrates a cost-effective, home-based and self-administrative screening process on chronic kidney disease patients, thereby enhancing the quality and area of possible application of telemedicine. By achieving this, the process presented here can relieve the burden of public health system.


Subject(s)
Renal Insufficiency, Chronic , Tomography , Humans , Electric Impedance , Tomography/methods , Sensitivity and Specificity , Tomography, X-Ray Computed , Renal Insufficiency, Chronic/diagnostic imaging
11.
ACS Sens ; 8(11): 4008-4013, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37930825

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology that is characterized by excessive deposition and abnormal remodeling of collagen. IPF has a mean survival time of only 2-5 years from diagnosis, creating a need to detect IPF at an earlier stage when treatments might be more effective. We sought to develop a minimally invasive probe that could detect molecular changes in IPF-associated collagen. Here, we describe the design, synthesis, and performance of [68Ga]Ga·DOTA-CMP, which comprises a positron-emitting radioisotope linked to a collagen-mimetic peptide (CMP). This peptide mimics the natural structure of collagen and detects irregular collagen matrices by annealing to damaged collagen triple helices. We assessed the ability of the peptide to detect aberrant lung collagen selectively in a bleomycin-induced mouse model of pulmonary fibrosis using positron emission tomography (PET). [68Ga]Ga·DOTA-CMP PET demonstrated higher and selective uptake in a fibrotic mouse lung compared to controls, minimal background signal in adjacent organs, and rapid clearance via the renal system. These studies suggest that [68Ga]Ga·DOTA-CMP identifies fibrotic lungs and could be useful in the early diagnosis of IPF.


Subject(s)
Gallium Radioisotopes , Idiopathic Pulmonary Fibrosis , Mice , Animals , Gallium Radioisotopes/pharmacology , Lung/diagnostic imaging , Idiopathic Pulmonary Fibrosis/diagnosis , Idiopathic Pulmonary Fibrosis/diagnostic imaging , Bleomycin/pharmacology , Collagen
12.
Radiology ; 309(1): e230984, 2023 10.
Article in English | MEDLINE | ID: mdl-37874235

ABSTRACT

Background Gadolinium retention has been observed in organs of patients with normal renal function; however, the biodistribution and speciation of residual gadolinium is not well understood. Purpose To compare the pharmacokinetics, distribution, and speciation of four gadolinium-based contrast agents (GBCAs) in healthy rats using MRI, mass spectrometry, elemental imaging, and electron paramagnetic resonance (EPR) spectroscopy. Materials and Methods In this prospective animal study performed between November 2021 and September 2022, 32 rats received a dose of gadoterate, gadoteridol, gadobutrol, or gadobenate (2.0 mmol/kg) for 10 consecutive days. GBCA-naive rats were used as controls. Three-dimensional T1-weighted ultrashort echo time images and R2* maps of the kidneys were acquired at 3, 17, 34, and 52 days after injection. At 17 and 52 days after injection, gadolinium concentrations in 23 organ, tissue, and fluid specimens were measured with mass spectrometry; gadolinium distribution in the kidneys was evaluated using elemental imaging; and gadolinium speciation in the kidney cortex was assessed using EPR spectroscopy. Data were assessed with analysis of variance, Kruskal-Wallis test, analysis of response profiles, and Pearson correlation analysis. Results For all GBCAs, the kidney cortex exhibited higher gadolinium retention at 17 days after injection than all other specimens tested (mean range, 350-1720 nmol/g vs 0.40-401 nmol/g; P value range, .001-.70), with gadoteridol showing the lowest level of retention. Renal cortex R2* values correlated with gadolinium concentrations measured ex vivo (r = 0.95; P < .001), whereas no associations were found between T1-weighted signal intensity and ex vivo gadolinium concentration (r = 0.38; P = .10). EPR spectroscopy analysis of rat kidney cortex samples showed that all GBCAs were primarily intact at 52 days after injection. Conclusion Compared with other macrocyclic GBCAs, gadoteridol administration led to the lowest level of retention. The highest concentration of gadolinium was retained in the kidney cortex, but T1-weighted MRI was not sensitive for detecting residual gadolinium in this tissue. © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Tweedle in this issue.


Subject(s)
Contrast Media , Organometallic Compounds , Rats , Humans , Animals , Gadolinium/pharmacokinetics , Tissue Distribution , Prospective Studies , Brain , Gadolinium DTPA , Magnetic Resonance Imaging/methods
13.
medRxiv ; 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37808864

ABSTRACT

Rationale: Radiation-induced lung injury (RILI) is a progressive inflammatory process commonly seen following irradiation for lung cancer. The disease can be insidious, often characterized by acute pneumonitis followed by chronic fibrosis with significant associated morbidity. No therapies are approved for RILI, and accurate disease quantification is a major barrier to improved management. Objective: To noninvasively quantify RILI, utilizing a molecular imaging probe that specifically targets type 1 collagen in mouse models and patients with confirmed RILI. Methods: Using a murine model of lung radiation, mice were imaged with EP-3533, a type 1 collagen probe to characterize the development of RILI and to assess disease mitigation following losartan treatment. The human analog probe targeted against type 1 collagen, 68Ga-CBP8, was tested on excised human lung tissue containing RILI and quantified via autoradiography. Finally, 68Ga-CBP8 PET was used to assess RILI in vivo in six human subjects. Results: Murine models demonstrated that probe signal correlated with progressive RILI severity over six-months. The probe was sensitive to mitigation of RILI by losartan. Excised human lung tissue with RILI had increased binding vs unirradiated control tissue and 68Ga-CBP8 uptake correlated with collagen proportional area. Human imaging revealed significant 68Ga-CBP8 uptake in areas of RILI and minimal background uptake. Conclusions: These findings support the ability of a molecular imaging probe targeted at type 1 collagen to detect RILI in preclinical models and human disease, suggesting a role for targeted molecular imaging of collagen in the assessment of RILI.Clinical trial registered with www.clinicaltrials.gov (NCT04485286, NCT03535545).

14.
Mol Imaging Biol ; 25(5): 944-953, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37610609

ABSTRACT

PURPOSE: Idiopathic pulmonary fibrosis (IPF) is a destructive lung disease with a poor prognosis, an unpredictable clinical course, and inadequate therapies. There are currently no measures of disease activity to guide clinicians making treatment decisions. The aim of this study was to develop a PET probe to identify lung fibrogenesis using a pre-clinical model of pulmonary fibrosis, with potential for translation into clinical use to predict disease progression and inform treatment decisions. METHODS: Eight novel allysine-targeting chelators, PIF-1, PIF-2, …, PIF-8, with different aldehyde-reactive moieties were designed, synthesized, and radiolabeled with gallium-68 or copper-64. PET probe performance was assessed in C57BL/6J male mice 2 weeks after intratracheal bleomycin challenge and in naïve mice by dynamic PET/MR imaging and with biodistribution at 90 min post injection. Lung hydroxyproline and allysine were quantified ex vivo and histological staining for fibrosis and aldehyde was performed. RESULTS: In vivo screening of probes identified 68GaPIF-3 and 68GaPIF-7 as probes with high uptake in injured lung, high uptake in injured lung versus normal lung, and high uptake in injured lung versus adjacent liver and heart tissue. A crossover, intra-animal PET/MR imaging study of 68GaPIF-3 and 68GaPIF-7 confirmed 68GaPIF-7 as the superior probe. Specificity for fibrogenesis was confirmed in a crossover, intra-animal PET/MR imaging study with 68GaPIF-7 and a non-binding control compound, 68GaPIF-Ctrl. Substituting copper-64 for gallium-68 did not affect lung uptake or specificity indicating that either isotope could be used. CONCLUSION: A series of allysine-reactive PET probes with variations in the aldehyde-reactive moiety were evaluated in a pre-clinical model of lung fibrosis. The hydrazine-bearing probe, 68GaPIF-7, exhibited the highest uptake in fibrogenic lung, low uptake in surrounding liver or heart tissue, and low lung uptake in healthy mice and should be considered for further clinical translation.

15.
J Am Chem Soc ; 145(38): 20825-20836, 2023 09 27.
Article in English | MEDLINE | ID: mdl-37589185

ABSTRACT

During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small-molecule magnetic resonance probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis non-invasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that, for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, makes them strong candidates for clinical translation.


Subject(s)
2-Aminoadipic Acid , Aldehydes , Mice , Animals , 2-Aminoadipic Acid/chemistry , Magnetic Resonance Imaging , Lung
16.
bioRxiv ; 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37131719

ABSTRACT

During fibroproliferation, protein-associated extracellular aldehydes are formed by the oxidation of lysine residues on extracellular matrix proteins to form the aldehyde allysine. Here we report three Mn(II)-based, small molecule magnetic resonance (MR) probes that contain α-effect nucleophiles to target allysine in vivo and report on tissue fibrogenesis. We used a rational design approach to develop turn-on probes with a 4-fold increase in relaxivity upon targeting. The effects of aldehyde condensation rate and hydrolysis kinetics on the performance of the probes to detect tissue fibrogenesis noninvasively in mouse models were evaluated by a systemic aldehyde tracking approach. We showed that for highly reversible ligations, off-rate was a stronger predictor of in vivo efficiency, enabling histologically validated, three-dimensional characterization of pulmonary fibrogenesis throughout the entire lung. The exclusive renal elimination of these probes allowed for rapid imaging of liver fibrosis. Reducing the hydrolysis rate by forming an oxime bond with allysine enabled delayed phase imaging of kidney fibrogenesis. The imaging efficacy of these probes, coupled with their rapid and complete elimination from the body, make them strong candidates for clinical translation.

17.
J Nucl Med ; 64(5): 775-781, 2023 05.
Article in English | MEDLINE | ID: mdl-37116909

ABSTRACT

The 68Ga-Collagen Binding Probe #8, 68Ga-CBP8, is a peptide-based, type I collagen-targeted probe developed for imaging of tissue fibrosis. The aim of this study was to determine the biodistribution, dosimetry, and pharmacokinetics of 68Ga-CBP8 in healthy human subjects. Methods: Nine healthy volunteers (5 male and 4 female) underwent whole-body 68Ga-CBP8 PET/MRI using a Biograph mMR scanner. The subjects were imaged continuously for up to 2 h after injection of 68Ga-CBP8. A subset of subjects underwent an additional imaging session 2-3 h after probe injection. OLINDA/EXM software was used to calculate absorbed organ and effective dose estimates based on up to 17 regions of interest (16 for men) defined on T2-weighted MR images and copied to the PET images, assuming a uniform distribution of probe concentration in each region. Serial blood sampling up to 90 min after probe injection was performed to assess blood clearance and metabolic stability. Results: The mean injected activity (±SD) of 68Ga-CBP8 was 220 ± 100 MBq (range, 113-434 MBq). No adverse effects related to probe administration were detected. 68Ga-CBP8 demonstrated an extracellular distribution with predominantly rapid renal clearance. Doses on the urinary bladder were 0.15 versus 0.19 mGy/MBq for men versus women. The highest absorbed doses for the rest of the organs were measured in the kidneys (0.078 vs. 0.088 mGy/MBq) and the liver (0.032 vs. 0.041 mGy/MBq). The mean effective dose was 0.018 ± 0.0026 mSv/MBq using a 1-h voiding model. The 68Ga-CBP8 signal in the blood demonstrated biexponential pharmacokinetics with an initial distribution half-life of 4.9 min (95% CI, 2.4-9.4 min) and a 72-min elimination half-life (95% CI, 47-130 min). The only metabolite observed had a long blood plasma half-life, suggesting protein-bound 68Ga. Conclusion: 68Ga-CBP8 displays favorable in-human characteristics and dosimetry similar to that of other gallium-based probes. 68Ga-CBP8 could therefore be used for noninvasive collagen imaging across a range of human fibrotic diseases.


Subject(s)
Collagen Type I , Gallium Radioisotopes , Humans , Male , Female , Tissue Distribution , Radiometry/methods , Positron-Emission Tomography/methods
19.
Proc Natl Acad Sci U S A ; 120(18): e2220036120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37094132

ABSTRACT

SNIO-CBP, a single-nanometer iron oxide (SNIO) nanoparticle functionalized with a type I collagen-binding peptide (CBP), was developed as a T1-weighted MRI contrast agent with only endogenous elements for fast and noninvasive detection of liver fibrosis. SNIO-CBP exhibits 6.7-fold higher relaxivity compared to a molecular gadolinium-based collagen-binding contrast agent CM-101 on a per CBP basis at 4.7 T. Unlike most iron oxide nanoparticles, SNIO-CBP exhibits fast elimination from the bloodstream with a 5.7 min half-life, high renal clearance, and low, transient liver enhancement in healthy mice. We show that a dose of SNIO-CBP that is 2.5-fold lower than that for CM-101 has comparable imaging efficacy in rapid (within 15 min following intravenous injection) detection of hepatotoxin-induced liver fibrosis using T1-weighted MRI in a carbon tetrachloride-induced mouse liver injury model. We further demonstrate the applicability of SNIO-CBP in detecting liver fibrosis in choline-deficient L-amino acid-defined high-fat diet mouse model of nonalcoholic steatohepatitis. These results provide a platform with potential for the development of high relaxivity, gadolinium-free molecular MRI probes for characterizing chronic liver disease.


Subject(s)
Magnetite Nanoparticles , Nanoparticles , Mice , Animals , Contrast Media/chemistry , Liver Cirrhosis/pathology , Liver/pathology , Magnetic Resonance Imaging/methods , Disease Models, Animal , Magnetic Iron Oxide Nanoparticles , Collagen/analysis
20.
J Clin Invest ; 133(8)2023 04 17.
Article in English | MEDLINE | ID: mdl-36821389

ABSTRACT

How phosphate levels are detected in mammals is unknown. The bone-derived hormone fibroblast growth factor 23 (FGF23) lowers blood phosphate levels by reducing kidney phosphate reabsorption and 1,25(OH)2D production, but phosphate does not directly stimulate bone FGF23 expression. Using PET scanning and LC-MS, we found that phosphate increases kidney-specific glycolysis and synthesis of glycerol-3-phosphate (G-3-P), which then circulates to bone to trigger FGF23 production. Further, we found that G-3-P dehydrogenase 1 (Gpd1), a cytosolic enzyme that synthesizes G-3-P and oxidizes NADH to NAD+, is required for phosphate-stimulated G-3-P and FGF23 production and prevention of hyperphosphatemia. In proximal tubule cells, we found that phosphate availability is substrate-limiting for glycolysis and G-3-P production and that increased glycolysis and Gpd1 activity are coupled through cytosolic NAD+ recycling. Finally, we show that the type II sodium-dependent phosphate cotransporter Npt2a, which is primarily expressed in the proximal tubule, conferred kidney specificity to phosphate-stimulated G-3-P production. Importantly, exogenous G-3-P stimulated FGF23 production when Npt2a or Gpd1 were absent, confirming that it was the key circulating factor downstream of glycolytic phosphate sensing in the kidney. Together, these findings place glycolysis at the nexus of mineral and energy metabolism and identify a kidney-bone feedback loop that controls phosphate homeostasis.


Subject(s)
Parathyroid Hormone , Phosphates , Animals , Phosphates/metabolism , Parathyroid Hormone/metabolism , NAD/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Kidney/metabolism , Homeostasis , Glycolysis , Mammals/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...