Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.008
Filter
1.
Biochim Biophys Acta Mol Basis Dis ; : 167246, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763408

ABSTRACT

Glucose and lipid metabolic disorders (GLMDs), such as diabetes, dyslipidemia, metabolic syndrome, nonalcoholic fatty liver disease, and obesity, are significant public health issues that negatively impact human health. The endoplasmic reticulum (ER) plays a crucial role at the cellular level for lipid and sterol biosynthesis, intracellular calcium storage, and protein post-translational modifications. Imbalance and dysfunction of the ER can affect glucose and lipid metabolism. As an essential trace element, selenium contributes to various human physiological functions mainly through 25 types of selenoproteins (SELENOs). At least 10 SELENOs, with experimental and/or computational evidence, are predominantly found on the ER membrane or within its lumen. Two iodothyronine deiodinases (DIOs), DIO1 and DIO2, regulate the thyroid hormone deiodination in the thyroid and some external thyroid tissues, influencing glucose and lipid metabolism. Most of the other eight members maintain redox homeostasis in the ER. Especially, SELENOF, SELENOM, and SELENOS are involved in unfolded protein responses; SELENOI catalyzes phosphatidylethanolamine synthesis; SELENOK, SELENON, and SELENOT participate in calcium homeostasis regulation; and the biological significance of thioredoxin reductase 3 in the ER remains unexplored despite its established function in the thioredoxin system. This review examines recent research advances regarding ER SELENOs in GLMDs and aims to provide insights on ER-related pathology through SELENOs regulation.

2.
Article in English | MEDLINE | ID: mdl-38789354

ABSTRACT

Nitrate in surface and underground water caused systematic risk to the ecological environment. The electrochemically reduction of nitrate into ammonia (NO3RR), offering a sustainable route for nitrate containing wastewater treatment and ammonia fertilizer conversion. Exploration of catalyst with improved catalytic activity with lower energy barriers is still challenging. Here, we report a copper nitride (Cu3N) catalyst with moderate *NOx and *H2O intermediates adsorptions showed enhanced NO3RR performance. Density functional theory calculations reveals that the unique electronic structure of Cu3N provides efficient active sites for NO3RR, thus enabled balanced adsorption of *NO3 and *H2O (ΔE descriptor), sufficient active hydrogen, and moderate intermediate (*NO3 â†’ HNO3, *NH2→*NH3) adsorption energy. Notably, the in-situ analysis technology revealed potential-driven reconstruction and rehabilitation of Cu3N, forming possible nitrogen vacancy, thus implied for better mechanism understanding. The NO3RR activity of Cu3N surpasses that of most recent catalysts and demonstrates superior stability and implies the application for NH4+ fertilizer recovery, which maintaining an NH3 Faradaic efficiency of 93.1 % and high yield rate of 2.9 mg cm2h-1 at -0.6 V versus RHE. These findings broaden the application scenarios of Cu3N catalyst for ammonia synthesis and provide strategy on improving NO3RR performance.

3.
Heliyon ; 10(10): e30965, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38799757

ABSTRACT

Background: Chemotherapy-induced nausea and vomiting (CINV) is the most common adverse effect of chemotherapy and affects the continuation of chemotherapy in cancer patients. Electrical acupoint stimulation (EAS), which includes electroacupuncture and transcutaneous electrical stimulation (TES), has been used to treat CINV. This meta-analysis aimed to evaluate the efficacy of EAS in the treatment of CINV. Methods: Randomized controlled trials (RCTs) of EAS for CINV retrieved form five key databases. Two researchers independently performed article screening, data extraction and data integration. The Cochrane Collaboration's tool for assessing risk of bias was used to assesse the methodological quality according to Cochrane Handbook for Systematic Reviews of Interventions. RevMan 5.4 was used to perform analyses. Results: 10 RCTs with a total of 950 participants were included. The results showed that there was no significant difference between EAS compared to sham EAS in terms of increasing the rate of complete control of CINV and decreasing the overall incidence of CINV [RR = 1.26, 95 % CI (0.96, 1.66), P = 0.95; RR = 1.16, 95 % CI (0.97, 1.40), p = 0.71]. In terms of CINV severity, EAS reduced the occurrence of moderate-to-severe CINV [RR = 0.60, 95 % CI (0.38, 0.94), P = 0.03; RR = 0.50, 95 % CI (0.33, 0.76), P = 0.001]. Conclusion: EAS could improve moderate-to-severe CINV. However, EAS did not show a significant difference in reducing overall incidence and improving complete control rates compared with sham EAS. Due to limitations in the quality of the included articles, the available studies are insufficient to have sufficient evidence to confirm the efficacy of EAS for CINV. Validation with rigorously designed, large-sample, high-quality clinical trial studies may also be needed.

4.
Article in English | MEDLINE | ID: mdl-38752349

ABSTRACT

BACKGROUND: Polyphosphate (polyP), a procoagulant released from platelets, activates coagulation via the contact system and modulates cardiomyocyte viability. High-dose intravenous polyP is lethal in mice, presumably because of thrombosis. Previously, we showed that HRG (histidine-rich glycoprotein) binds polyP and attenuates its procoagulant effects. In this study, we investigated the mechanisms responsible for the lethality of intravenous polyP in mice and the impact of HRG on this process. METHODS: The survival of wild-type or HRG-deficient mice given intravenous synthetic or platelet-derived polyP in doses up to 50 mg/kg or saline was compared. To determine the contribution of thrombosis, the effect of FXII (factor XII) knockdown or enoxaparin on polyP-induced fibrin deposition in the lungs was examined. To assess cardiotoxicity, the ECG was continuously monitored, the levels of troponin I and the myocardial band of creatine kinase were quantified, and the viability of a cultured murine cardiomyocyte cell line exposed to polyP in the absence or presence of HRG was determined. RESULTS: In HRG-deficient mice, polyP was lethal at 30 mg/kg, whereas it was lethal in wild-type mice at 50 mg/kg. Although FXII knockdown or enoxaparin administration attenuated polyP-induced fibrin deposition in the lungs, neither affected mortality. PolyP induced dose-dependent ECG abnormalities, including heart block and ST-segment changes, and increased the levels of troponin and myocardial band of creatine kinase, effects that were more pronounced in HRG-deficient mice than in wild-type mice and were attenuated when HRG-deficient mice were given supplemental HRG. Consistent with its cardiotoxicity, polyP reduced the viability of cultured cardiomyocytes in a dose-dependent manner, an effect attenuated with supplemental HRG. CONCLUSIONS: High-dose intravenous polyP is cardiotoxic in mice, and HRG modulates this effect.

5.
J Acoust Soc Am ; 155(5): 3490-3504, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38804817

ABSTRACT

Attenuation is the most difficult seafloor acoustic property to get, particularly at low to mid frequencies. For low velocity bottoms (LVB), it becomes even more challenging, due to its small attenuation and lower velocity (relative to the velocity of the adjacent water). The latter one causes a fatal "seafloor velocity-attenuation couplings" in geo-acoustic inversions. Thus, attenuation inversions for the LVB require an accurate seafloor velocity profile, especially the velocity in the LVB layer. The propagation of explosive sound in the Yellow Sea with a strong thermocline and a top LVB layer exhibits many prominent characteristics: modal dispersion (the ground wave, water wave, Airy phase), two groups of water waves at high frequencies, and the siphon effect which causes abnormally large sound transmission loss at selected frequencies, etc. These observations are used to precisely measure the critical frequency, the Airy frequency, Airy wave velocity, 1st mode group velocity, and to derive the velocities in the LVB layer and in the basement. Using inverted seafloor parameters, the source level-normalized transmission loss and the first mode decay rate in ranges up to 27.66 km, the sound attenuations in the LVB are derived for a frequency range of 13-5000 Hz.

6.
Korean J Physiol Pharmacol ; 28(3): 239-252, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38682172

ABSTRACT

Dexmedetomidine displays multiple mechanisms of neuroprotection in ameliorating ischemic brain injury. In this study, we explored the beneficial effects of dexmedetomidine on blood-brain barrier (BBB) integrity and neuroinflammation in cerebral ischemia/reperfusion injury. Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 1.5 h and reperfusion for 24 h to establish a rat model of cerebral ischemia/reperfusion injury. Dexmedetomidine (9 􀁐g/kg) was administered to rats 30 min after MCAO through intravenous injection, and SB203580 (a p38 MAPK inhibitor, 200 􀁐g/kg) was injected intraperitoneally 30 min before MCAO. Brain damages were evaluated by 2,3,5-triphenyltetrazolium chloride staining, hematoxylin-eosin staining, Nissl staining, and brain water content assessment. BBB permeability was examined by Evans blue staining. Expression levels of claudin-5, zonula occludens-1, occludin, and matrix metalloproteinase-9 (MMP-9) as well as M1/M2 phenotypes-associated markers were assessed using immunofluorescence, RT-qPCR, Western blotting, and gelatin zymography. Enzyme-linked immunosorbent assay was used to examine inflammatory cytokine levels. We found that dexmedetomidine or SB203580 attenuated infarct volume, brain edema, BBB permeability, and neuroinflammation, and promoted M2 microglial polarization after cerebral ischemia/reperfusion injury. Increased MMP-9 activity by ischemia/reperfusion injury was inhibited by dexmedetomidine or SB203580. Dexmedetomidine inhibited the activation of the ERK, JNK, and p38 MAPK pathways. Moreover, activation of JNK or p38 MAPK reversed the protective effects of dexmedetomidine against ischemic brain injury. Overall, dexmedetomidine ameliorated brain injury by alleviating BBB permeability and promoting M2 polarization in experimental cerebral ischemia/reperfusion injury model by inhibiting the activation of JNK and p38 MAPK pathways.

7.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200242, 2024 May.
Article in English | MEDLINE | ID: mdl-38657195

ABSTRACT

BACKGROUND AND OBJECTIVES: Paraneoplastic neurologic syndromes (PNSs) are remote neurologic immune-related effects of tumors. The clinical characteristics of pediatric PNSs remain unclear. We retrospectively examined the clinical characteristics of cases of pediatric PNSs and assessed the performance of the 2021 diagnostic criteria in children. METHODS: Patients hospitalized in the Beijing Children's Hospital between June 2015 and June 2023 and fulfilling the description of definite by 2004 diagnostic criteria of PNSs were included. A retrospective analysis of clinical characteristics was conducted, and the 2021 diagnostic criteria were applied to rediagnostic stratification. RESULTS: Among the 42 patients included, the most common neurologic syndrome was opsoclonus-myoclonus syndrome (OMS) (62%), followed by rapidly progressive cerebellar syndrome (26%). Most tumors were neuroblastomas (88%), with few being ovarian teratomas (10%). Approximately 71% (30/42) of patients were classified as definite and 24% (10/42) as probable according to the 2021 criteria. All cases judged as probable exhibited rapidly progressive cerebellar ataxia with neuroblastoma. For OMS, chemotherapy was administered based on the tumor's risk stage, accompanied by regular infusion of IV gamma globulin and oral steroids following tumor diagnosis. Twenty-one patients underwent regular follow-ups over 4.92 (0.58-7.58) years. The initial hospitalization recorded a median score of 12 (7-14) on the Mitchell and Pike OMS rating scale, decreasing to 0 (0-5) at the final follow-up. In cases of rapidly progressive cerebellar syndrome, a similar therapeutic regimen was used. Nine patients underwent regular follow-ups over 4.42 (1.17-7.50) years. The mean modified Rankin scale score at first hospitalization was 4 (3-4), reducing to 1 (0-4) at the final follow-up. Only 17% (5/30) of patients across both groups exhibited poor response to this regimen. Among these 5 patients, 4 belonged to the low-risk group (without chemotherapy). DISCUSSION: OMS followed by rapidly progressive cerebellar ataxia are the most common forms of PNSs in children and are associated with neuroblastoma. An aggressive approach with multiple immunotherapies may improve the prognosis of neuroblastoma-associated PNSs. The 2021 criteria perform well in pediatric PNSs. However, we propose upgrading the classification of antibody-negative rapidly progressive cerebellar ataxia with neuroblastoma to definite diagnosis. This adjustment aims to further improve the diagnostic efficacy of this diagnostic criterion in childhood.


Subject(s)
Opsoclonus-Myoclonus Syndrome , Paraneoplastic Syndromes, Nervous System , Humans , Female , Male , Retrospective Studies , Child, Preschool , Child , Paraneoplastic Syndromes, Nervous System/diagnosis , Paraneoplastic Syndromes, Nervous System/immunology , Paraneoplastic Syndromes, Nervous System/therapy , Infant , Opsoclonus-Myoclonus Syndrome/diagnosis , Opsoclonus-Myoclonus Syndrome/etiology , Opsoclonus-Myoclonus Syndrome/drug therapy , Adolescent , Neuroblastoma/complications , Neuroblastoma/diagnosis
8.
Food Funct ; 15(8): 4614-4626, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38590249

ABSTRACT

The role of vitamin D (VD) in non-alcoholic fatty liver disease (NAFLD) remains controversial, possibly due to the differential effects of various forms of VD. In our study, Sod1 gene knockout (SKO) mice were utilized as lean NAFLD models, which were administered 15 000 IU VD3 per kg diet, or intraperitoneally injected with the active VD analog calcipotriol for 12 weeks. We found that VD3 exacerbated hepatic steatosis in SKO mice, with an increase in the levels of Cd36, Fatp2, Dgat2, and CEBPA. However, calcipotriol exerted no significant effect on hepatic steatosis. Calcipotriol inhibited the expression of Il-1a, Il-1b, Il-6, Adgre1, and TNF, with a reduction of NFκB phosphorylation in SKO mice. No effect was observed by either VD3 or calcipotriol on hepatocyte injury and hepatic fibrosis. Co-immunofluorescence stains of CD68, a liver macrophage marker, and VDR showed that calcipotriol reduced CD68 positive cells, and increased the colocalization of VDR with CD68. However, VD3 elevated hepatocyte VDR expression, with no substantial effect on the colocalization of VDR with CD68. Finally, we found that VD3 increased the levels of serum 25(OH)D3 and 24,25(OH)2D3, whereas calcipotriol decreased both. Both VD3 and calcipotriol did not disturb serum calcium and phosphate levels. In summary, our study found that VD3 accentuated hepatic steatosis, while calcipotriol diminished inflammation levels in SKO mice, and the difference might stem from their distinct cellular selectivity in activating VDR. This study provides a reference for the application of VD in the treatment of lean NAFLD.


Subject(s)
Calcitriol , Calcitriol/analogs & derivatives , Cholecalciferol , Mice, Knockout , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/genetics , Calcitriol/pharmacology , Mice , Cholecalciferol/pharmacology , Male , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Liver/metabolism , Liver/drug effects , Receptors, Calcitriol/genetics , Receptors, Calcitriol/metabolism , Inflammation/drug therapy , Mice, Inbred C57BL , Humans , Disease Models, Animal
10.
Bioinspir Biomim ; 19(3)2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38569526

ABSTRACT

Computational models are used to examine the effect of schooling on flow generated noise from fish swimming using their caudal fins. We simulate the flow as well as the far-field hydrodynamic sound generated by the time-varying pressure loading on these carangiform swimmers. The effect of the number of swimmers in the school, the relative phase of fin flapping of the swimmers, and their spatial arrangement is examined. The simulations indicate that the phase of the fin flapping is a dominant factor in the total sound radiated into the far-field by a group of swimmers. For small schools, a suitable choice of relative phase between the swimmers can significantly reduce the overall intensity of the sound radiated to the far-field. The relative positioning of the swimmers is also shown to have an impact on the total radiated noise. For a larger school, even highly uncorrelated phases of fin movement between the swimmers in the school are very effective in significantly reducing the overall intensity of sound radiated into the far-field. The implications of these findings for fish ethology as well as the design and operation of bioinspired vehicles are discussed.


Subject(s)
Fishes , Models, Biological , Animals , Biomechanical Phenomena , Swimming , Schools
11.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1327-1334, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621980

ABSTRACT

This study aims to investigate whether baicalin induces ferroptosis in HepG2 cells and decipher the underlying mechanisms based on network pharmacology and cell experiments. HepG2 cells were cultured in vitro and the cell viability was detected by the cell counting kit-8(CCK-8). The transcriptome data of hepatocellular carcinoma were obtained from the Cancer Genome Atlas(TCGA), and the ferroptosis gene data from FerrDb V2. The DEG2 package was used to screen the differentially expressed genes(DEGs), and the common genes between DEGs and ferroptosis genes were selected as the target genes that mediate ferroptosis to regulate hepatocellular carcinoma progression. The functions and structures of the target genes were analyzed by Gene Ontology(GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment with the thresholds of P<0.05 and |log_2(fold change)|>0.5. DCFH-DA probe was used to detect the changes in the levels of cellular reactive oxygen species(ROS) in each group. The reduced glutathione(GSH) assay kit was used to measure the cellular GSH level, and Fe~(2+) assay kit to determine the Fe~(2+) level. Real-time quantitative PCR(RT-PCR) was employed to measure the mRNA levels of glutathione peroxidase 4(GPX4) and solute carrier family 7 member 11(SLC7A11) in each group. Western blot was employed to determine the protein levels of GPX4, SLC7A11, phosphatidylinositol 3-kinase(PI3K), p-PI3K, protein kinase B(Akt), p-Akt, forkhead box protein O3a(FoxO3a), and p-FoxO3a in each group. The results showed that treatment with 200 µmol·L~(-1) baicalin for 48 h significantly inhibited the viability of HepG2 cells. Ferroptosis in hepatocellular carcinoma could be regulated via the PI3K/Akt signaling pathway. The cell experiments showed that baicalin down-regulated the expression of SLC7A11 and GPX4, lowered the GSH level, and increased ROS accumulation and Fe~(2+) production in HepG2 cells. However, ferrostatin-1, an ferroptosis inhibitor, reduced baicalin-induced ROS accumulation, up-regulated the expression of SLC7A11 and GPX4, elevated the GSH level, and decreased PI3K, Akt, and FoxO3a phosphorylation. In summary, baicalin can induce ferroptosis in HepG2 cells by inhibiting the ROS-mediated PI3K/Akt/FoxO3a pathway.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Flavonoids , Liver Neoplasms , Humans , Proto-Oncogene Proteins c-akt/genetics , Phosphatidylinositol 3-Kinases/genetics , Reactive Oxygen Species , Hep G2 Cells , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Signal Transduction
12.
Acta Pharmacol Sin ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671193

ABSTRACT

Despite the widespread prevalence and important medical impact of insomnia, effective agents with few side effects are lacking in clinics. This is most likely due to relatively poor understanding of the etiology and pathophysiology of insomnia, and the lack of appropriate animal models for screening new compounds. As the main homeostatic, circadian, and neurochemical modulations of sleep remain essentially similar between humans and rodents, rodent models are often used to elucidate the mechanisms of insomnia and to develop novel therapeutic targets. In this article, we focus on several rodent models of insomnia induced by stress, diseases, drugs, disruption of the circadian clock, and other means such as genetic manipulation of specific neuronal activity, respectively, which could be used to screen for novel hypnotics. Moreover, important advantages and constraints of some animal models are discussed. Finally, this review highlights that the rodent models of insomnia may play a crucial role in novel drug development to optimize the management of insomnia.

13.
Opt Express ; 32(6): 9128-9138, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38571153

ABSTRACT

High-speed optical polarization characterization is highly desirable for a wide range of applications, including remote sensing, telecommunication, and medical diagnosis. The utilization of the Mueller matrix provides a superior systematic and comprehensive approach to represent polarization attributes when matter interacts with optical beams. However, the current measurement speed of Mueller matrix is limited to only seconds or milliseconds. In this study, we present an ultrafast Mueller matrix polarimetry (MMP) technique based on optical time-stretch and spectral encoding that enables us to achieve an impressive temporal resolution of 4.83 nanoseconds for accurate Mueller matrix measurements. The unique feature of optical time-stretch technology enables continuous, ultrafast single-shot spectroscopy, resulting in a remarkable speed of up to 207 MHz for spectral encoding Mueller matrix measurement. We have employed an effective Mueller linear reconstruction algorithm based on the measured modulation matrix, accounting for all potential non-ideal effects of polarization components like retardance error and azimuth error. To ensure high precision, prior to the actual measurement, high-order dispersion induced by time-stretch requires adjustment through proper modulation matrix design. Upon such correction, both the results of static and rapid dynamic samples measurements exhibit exceptional accuracy with root-mean-square error (RMSE) approximately equal to 0.04 and 0.07 respectively. This presented ultrafast MMP provides a significant advance over preceding endeavors, enabling superior accuracy and increased speed concurrently.

14.
Eur J Gastroenterol Hepatol ; 36(5): 608-614, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38477849

ABSTRACT

BACKGROUND: Consuming sugar-sweetened beverages (SSBs) has been linked to the development of various adverse health conditions, including metabolic dysfunction-associated steatotic liver disease (MASLD). This study evaluated associations between SSB intake and long-term mortality among individuals with MASLD using a nationally representative database. METHODS: This population-based, longitudinal study extracted data of adults aged 20-79 years with MASLD from the USA (US) National Health and Nutrition Examination Survey database 2003-2014. Associations between the amount of SSB intake and all-cause, cancer and cardiovascular disease mortality until the end of 2019 were determined using Cox proportional hazards regression analyses. RESULTS: A total of 12 965 individuals aged 20-79 years who had MASLD were identified in the database. After exclusion, 5630 participants remained for the analyses. This cohort can be extrapolated to 43 420 321 individuals in the entire US after proper weighting. The mean age of the study cohort was 44.1 years. After adjusting for confounders, no significant association was observed between SSB intake (tertile 3 vs. tertile 1) and all-cause [adjusted hazard ratio (aHR): 1.03, 95% confidence interval (CI), 0.60-1.76) or cancer mortality (aHR, 0.41; 95% CI, 0.15-1.16). However, higher SSB intake (tertile 3 vs. tertile 1) was significantly associated with elevated cardiovascular disease mortality risk (aHR = 2.83; 95% CI, 1.01-7.91). CONCLUSION: In US adults with MASLD, high SSB intake is associated with nearly three-fold increased cardiovascular disease mortality risk. The findings underscore the critical need for concerted action on the part of healthcare providers and policymakers.


Subject(s)
Cardiovascular Diseases , Liver Diseases , Neoplasms , Sugar-Sweetened Beverages , Adult , Humans , Sugar-Sweetened Beverages/adverse effects , Beverages/adverse effects , Nutrition Surveys , Longitudinal Studies
15.
Opt Express ; 32(4): 5301-5322, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439261

ABSTRACT

Source and mask optimization (SMO) technology is increasingly relied upon for resolution enhancement of photolithography as critical dimension (CD) shrinks. In advanced CD technology nodes, little process variation can impose a huge impact on the fidelity of lithography. However, traditional source and mask optimization (SMO) methods only evaluate the imaging quality in the focal plane, neglecting the process window (PW) that reflects the robustness of the lithography process. PW includes depth of focus (DOF) and exposure latitude (EL), which are computationally intensive and unfriendly to gradient-based SMO algorithms. In this study, we propose what we believe to be a novel process window enhancement SMO method based on the Nondominated Sorting Genetic Algorithm II (NSGA-II), which is a multi-objective optimization algorithm that can provide multiple solutions. By employing the variational lithography model (VLIM), a fast focus-variation aerial image model, our method, NSGA-SMO, can directly optimize the PW performance and improve the robustness of SMO results while maintaining the in-focus image quality. Referring to the simulations of two typical patterns, NSGA-SMO showcases an improvement of more than 20% in terms of DOF and EL compared to conventional multi-objective SMO, and even four times superior to single-objective SMO for complicated patterns.

16.
Intensive Care Med Exp ; 12(1): 28, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38457063

ABSTRACT

INTRODUCTION: Despite older adults being more vulnerable to sepsis, most preclinical research on sepsis has been conducted using young animals. This results in decreased scientific validity since age is an independent predictor of poor outcome. In this study, we explored the impact of aging on the host response to sepsis using the fecal-induced peritonitis (FIP) model developed by the National Preclinical Sepsis Platform (NPSP). METHODS: C57BL/6 mice (3 or 12 months old) were injected intraperitoneally with rat fecal slurry (0.75 mg/g) or a control vehicle. To investigate the early stage of sepsis, mice were culled at 4 h, 8 h, or 12 h to investigate disease severity, immunothrombosis biomarkers, and organ injury. Mice received buprenorphine at 4 h post-FIP. A separate cohort of FIP mice were studied for 72 h (with buprenorphine given at 4 h, 12 h, and then every 12 h post-FIP and antibiotics/fluids starting at 12 h post-FIP). Organs were harvested, plasma levels of Interleukin (IL)-6, IL-10, monocyte chemoattract protein (MCP-1)/CCL2, thrombin-antithrombin (TAT) complexes, cell-free DNA (CFDNA), and ADAMTS13 activity were quantified, and bacterial loads were measured. RESULTS: In the 12 h time course study, aged FIP mice demonstrated increased inflammation and injury to the lungs compared to young FIP mice. In the 72 h study, aged FIP mice exhibited a higher mortality rate (89%) compared to young FIP mice (42%) (p < 0.001). Aged FIP non-survivors also exhibited a trend towards elevated IL-6, TAT, CFDNA, CCL2, and decreased IL-10, and impaired bacterial clearance compared to young FIP non-survivors. CONCLUSION: To our knowledge, this is the first study to investigate the impact of age on survival using the FIP model of sepsis. Our model includes clinically-relevant supportive therapies and inclusion of both sexes. The higher mortality rate in aged mice may reflect increased inflammation and worsened organ injury in the early stage of sepsis. We also observed trends in impaired bacterial clearance, increase in IL-6, TAT, CFDNA, CCL2, and decreased IL-10 and ADAMTS13 activity in aged septic non-survivors compared to young septic non-survivors. Our aging model may help to increase the scientific validity of preclinical research and may be useful for identifying mechanisms of age-related susceptibility to sepsis as well as age-specific treatment strategies.

17.
Pathol Res Pract ; 256: 155267, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520953

ABSTRACT

Melanoma is the most suitable tumor type for immunotherapy, but not all melanoma patients could respond to immunotherapy. B7 homolog 3 (B7-H3) belongs to the B7 family and is overexpressed in a number of malignant tumors, but the expression pattern of B7-H3 in melanoma has not been well summarized. The expression of B7-H3 was investigated in melanoma and its correlations with features of the tumor microenvironment (TME) by using various public databases, including the Cancer Genome Atlas (TCGA), the GEPIA, and the Human Protein Atlas databases. In addition, the in-house melanoma tissue microarray was applied to validate the results from public databases. Based on the public and in-house cohorts, we found that B7-H3 was overexpressed in melanoma tumor tissues and high B7-H3 expression was related to poor clinical outcome. Moreover, B7-H3 was negatively correlated with levels of tumor-infiltrating lymphocytes (TILs) and positively correlated with collagen infiltration. With clinical translational value, the predictive value of B7-H3 for conventional immunotherapy was detected using the Kaplan-Meier plotter tool, and the results showed that melanoma patients with high B7-H3 expression were insensitive to anti-PD-1 and anti-CTLA-4 immunotherapy. In conclusion, we first investigate the expression of B7-H3 in melanoma and its correlations with the TME features, and indicate B7-H3 as a promising therapeutic target in melanoma patients that are insensitive to conventional immunotherapy.


Subject(s)
Melanoma , Humans , B7 Antigens/metabolism , Immune Checkpoint Inhibitors , Lymphocytes, Tumor-Infiltrating , Melanoma/pathology , Phenotype , Tumor Microenvironment
18.
Sci Total Environ ; 923: 171477, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38460686

ABSTRACT

Mapping vegetation formation types in large areas is crucial for ecological and environmental studies. However, this is still challenging to distinguish similar vegetation formation types using existing predictive vegetation mapping methods, based on commonly used environmental variables and remote sensing spectral data, especially when there are not enough training samples. To solve this issue, we proposed a predictive vegetation mapping method by integrating an advanced machine learning algorithm and knowledge in an early coarse-scale vegetation map (VMK). First, we implemented classification using the random forest algorithm by integrating the early vegetation map as an auxiliary feature (VMF). Then, we determined the rationality of classified vegetation types and distinguished the confusing types, respectively, based on the knowledge of the spatial distributions and hierarchies of vegetation. Finally, we replaced each recognized unreasonable vegetation type with its corresponding reasonable vegetation type. We implemented the new method in upstream of the Yellow River based on GaoFen-1 satellite images and other environmental variables (i.e., topographical and climate variables). Results showed that the overall accuracy using the VMK method ranged from 67.7 % to 76.8 %, which was 10.9 % to 13.4 % and 3.2 % to 6.6 %, respectively, higher than that of the method without the early vegetation map (NVM) and the VMF method, based on cross-validation with 20 % to 60 % random training samples. The spatial details of the vegetation map using the VMK method were also more reasonable compared to the NVM and VMF methods. These results indicated that the VMK method can distinctly improve the mapping accuracy at the vegetation formation level by integrating knowledge of existing vegetation maps. The proposed method can largely reduce the requirements on the number of field samples, which is especially important for alpine mountains and arctic region, where collecting training samples is more difficult due to the harsh natural environment.

19.
Micromachines (Basel) ; 15(2)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38399017

ABSTRACT

Microlens arrays, as typical micro-optical elements, effectively enhance the integration and performance of optical systems. The surface shape errors and surface roughness of microlens arrays are the main indicators of their optical characteristics and determine their optical performance. In this study, a mask-moving-projection-lithography-based high-precision surface fabrication method for microlens arrays is proposed, which effectively reduces the surface shape errors and surface roughness of microlens arrays. The pre-exposure technology is used to reduce the development threshold of the photoresist, thus eliminating the impact of the exposure threshold on the surface shape of the microlens. After development, the inverted air bath reflux method is used to bring the microlens array surface to a molten state, effectively eliminating surface protrusions. Experimental results show that the microlens arrays fabricated using this method had a root mean square error of less than 2.8%, and their surface roughness could reach the nanometer level, which effectively improves the fabrication precision for microlens arrays.

20.
Sci Rep ; 14(1): 4384, 2024 02 22.
Article in English | MEDLINE | ID: mdl-38388535

ABSTRACT

To investigate the frequency of monocytic myeloid-derived suppressor cells (M-MDSCs) in type 2 diabetes mellitus (T2DM) patients and explore the potential associations between M-MDSCs, glycemic control, and the occurrence of infections and tumor. 102 healthy and 77 T2DM individuals were enrolled. We assessed the M-MDSCs frequency, levels of fasting plasma glucose (FPG), haemoglobin A1c (HbA1c), and other relevant indicators. Each patient underwent a follow-up of at least 6 months after M-MDSCs detection. The M-MDSCs frequency was significantly higher in patients with poor glycemic control (PGC) compared to the healthy population (P < 0.001), whereas there was no significant difference between patients with good glycemic control and the healthy (P > 0.05). There was a positive correlation between the M-MDSCs frequency and FPG, HbA1c (R = 0.517 and 0.315, P < 0.001, respectively). T2DM patients with abnormally increased M-MDSCs have a higher incidence of infection and tumor (48.57% and 11.43% respectively). Our results shed new light on the pathogenesis of T2DM, help to understand why T2DM patients are susceptible to infection and tumor and providing novel insights for future prevention and treatment of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Myeloid-Derived Suppressor Cells , Neoplasms , Humans , Diabetes Mellitus, Type 2/complications , Glycated Hemoglobin , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...