Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2401109, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970168

ABSTRACT

Flexible electro-optical dual-mode sensor fibers with capability of the perceiving and converting mechanical stimuli into digital-visual signals show good prospects in smart human-machine interaction interfaces. However, heavy mass, low stretchability, and lack of non-contact sensing function seriously impede their practical application in wearable electronics. To address these challenges, a stretchable and self-powered mechanoluminescent triboelectric nanogenerator fiber (MLTENGF) based on lightweight carbon nanotube fiber is successfully constructed. Taking advantage of their mechanoluminescent-triboelectric synergistic effect, the well-designed MLTENGF delivers an excellent enhancement electrical signal of 200% and an evident optical signal whether on land or underwater. More encouragingly, the MLTENGF device possesses outstanding stability with almost unchanged sensitivity after stretching for 200%. Furthermore, an extraordinary non-contact sensing capability with a detection distance of up to 35 cm is achieved for the MLTENGF. As application demonstrations, MLTENGFs can be used for home security monitoring, intelligent zither, traffic vehicle collision avoidance, and underwater communication. Thus, this work accelerates the development of wearable electro-optical textile electronics for smart human-machine interaction interfaces.

2.
Adv Mater ; 36(21): e2313772, 2024 May.
Article in English | MEDLINE | ID: mdl-38402409

ABSTRACT

Fiber-shaped aqueous zinc-ion batteries (FAZIBs) with intrinsic safety, highcapacity, and superb omnidirectional flexibility hold promise for wearable energy-supply devices. However, the interfacial separation of fiber-shaped electrodes and electrolytes caused by Zinc (Zn) stripping process and severe Zn dendrites occurring at the folded area under bending condition seriously restricts FAZIBs' practical application. Here, an advanced confinement encapsulation strategy is originally reported to construct dual-layer gel electrolyte consisting of high-fluidity polyvinyl alcohol-Zn acetate inner layer and high-strength Zn alginate outer layer for fiber-shaped Zn anode. Benefiting from the synergistic effect of inner-outer gel electrolyte and the formation of solid electrolyte interphase on Zn anode surface by lysine additive, the resulting fiber-shaped Zn-Zn symmetric cell delivers long cycling life over 800 h at 1 mA cm-2 with dynamic bending frequency of 0.1 Hz. The finite element simulation further confirms that dual-layer gel electrolyte can effectively suppress the interfacial separation arising from the Zn stripping and bending process. More importantly, a robust twisted fiber-shaped Zn/zinc hexacyanoferrate battery based on dual-layer gel electrolyte is successfully assembled, achieving a remarkable capacity retention of 97.7% after bending 500 cycles. Therefore, such novel dual-layer gel electrolyte design paves the way for the development of long-life fiber-shaped aqueous metal batteries.

3.
Nano Lett ; 23(23): 11297-11306, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37962986

ABSTRACT

Fiber-shaped photodetectors (FPDs) with multidirectional light absorption properties offer exciting opportunities for intelligent optoelectronic textiles. However, achieving FPDs capable of working in ampule environments, especially with high sensitivity, remains a fundamental challenge. Here, quasi-solid-state twisted-fiber photoelectrochemical photodetectors (FPPDs) consisting of photoanode, gel electrolyte, and counter electrode are successfully assembled. In situ decorated n-type one-dimensional (1D) TiO2 nanowire arrays with 2D Ni-Fe metal-organic framework (NiFeMOF) nanosheets serve as hierarchical heterojunction photoanodes, thereby optimizing carrier transfer dynamics at the photoanode/electrolyte interface. As expected, the resulting self-powered FPPD exhibits 88.6 mA W-1 high responsiveness and a < 30 ms fast response time. Significantly, our FPPD can operate in both terrestrial and aquatic environments thanks to its intrinsic ionic properties, making it a versatile tool for detecting ultraviolet light on land and facilitating optical communication underwater. These high-sensitivity self-powered FPPDs with hierarchical heterojunction photoelectrodes hold promise for the development of wearable amphibious optoelectronic textiles.

4.
ACS Nano ; 17(20): 20087-20097, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37787647

ABSTRACT

Fiber-shaped photodetectors (FPDs) have attracted special attention to wearable health monitoring due to their 3D absorption capabilities. However, the practical application of traditional FPDs is severely limited by the irreversible degradation of performance caused by vulnerable interface compatibility on complex deformation and a single function. Here, an integrated photoelectrochemical FPD/battery device (FPDB) is designed, consisting of a common electrode, photoanode, anode, and sol-gel electrolyte as an isolation layer, which not only effectively avoids the short circuit problem of FPD but also endows high-efficiency energy storage capacity. As expected, the resulting all-in-one triple-twisted fiber-shaped FPDB simultaneously achieves high responsiveness of 151.45 mA W-1 and excellent volume capacity of 18.75 mAh cm-3. Such a stable architectural design and multifunctional integration of functional fibers accelerate the development of next-generation wearable fabrics.

5.
J Colloid Interface Sci ; 594: 540-549, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33774410

ABSTRACT

Aqueous zinc ion battery constitutes a safe, stable and promising next-generation energy storage device, but suffers the lack of suitable host compounds for zinc ion storage. Development of a facile way to emerging cathode materials is strongly requested toward superior electrochemical activities and practical applications. Herein, defect engineering, i.e., simultaneous introduction of nitrogen dopant and oxygen vacancy into commercial and low-cost MnO, is proposed as a positive strategy to activate the originally inert phase for kinetically propelling its zinc ion storage capability. Both experimental characterization and theoretical calculations demonstrate that the nitrogen dopant significantly improves the electric conductivity of electrochemical inert MnO. Simultaneously, the oxygen vacancy creates sufficient large inserted channels and available activated adsorption sites for zinc ions storage. These synergistic structural advantages obviously ameliorate the electrochemical performance of inert MnO. Therefore, even without any conductive agent additive, the as-prepared material shows high specific capacity, superb rate capability, prolonged cycling stability and attractive energy density, which are dramatically superior to those of the pristine MnO as well as many other host cathode materials. This work presents fresh insights on the role of defect engineering in the enhancement of the intrinsic electrochemical reactivity of inert cathode, and an effective strategy for scalable fabrication of high-performance cathode for zinc ion battery.

SELECTION OF CITATIONS
SEARCH DETAIL
...