Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Nat Nanotechnol ; 19(3): 345-353, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37903891

ABSTRACT

Since their initial development, cell membrane-coated nanoparticles (CNPs) have become increasingly popular in the biomedical field. Despite their inherent versatility and ability to enable complex biological applications, there is considerable interest in augmenting the performance of CNPs through the introduction of additional functionalities. Here we demonstrate a genetic-engineering-based modular approach to CNP functionalization that can encompass a wide range of ligands onto the nanoparticle surface. The cell membrane coating is engineered to express a SpyCatcher membrane anchor that can readily form a covalent bond with any moiety modified with SpyTag. To demonstrate the broad utility of this technique, three unique targeted CNP formulations are generated using different classes of targeting ligands, including a designed ankyrin repeat protein, an affibody and a single-chain variable fragment. In vitro, the modified nanoparticles exhibit enhanced affinity towards cell lines overexpressing the cognate receptors for each ligand. When formulated with a chemotherapeutic payload, the modularly functionalized nanoparticles display strong targeting ability and growth suppression in a murine tumour xenograft model of ovarian cancer. Our data suggest genetic engineering offers a feasible approach for accelerating the development of multifunctional CNPs for a broad range of biomedical applications.


Subject(s)
Genetic Engineering , Nanoparticles , Humans , Animals , Mice , Cell Line , Cell Membrane , Nanoparticles/chemistry
2.
Small ; 19(52): e2305551, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37635117

ABSTRACT

Nanoparticles coated with natural cell membranes have emerged as a promising class of biomimetic nanomedicine with significant clinical potential. Among them, macrophage membrane-coated nanoparticles hold particular appeal due to their versatility in drug delivery and biological neutralization applications. This study employs a genetic engineering approach to enhance their in vivo residence times, aiming to further improve their performance. Specifically, macrophages are engineered to express proline-alanine-serine (PAS) peptide chains, which provide additional protection against opsonization and phagocytosis. The resulting modified nanoparticles demonstrate prolonged residence times when administered intravenously or introduced intratracheally, surpassing those coated with the wild-type membrane. The longer residence times also contribute to enhanced nanoparticle efficacy in inhibiting inflammatory cytokines in mouse models of lipopolysaccharide-induced lung injury and sublethal endotoxemia, respectively. This study underscores the effectiveness of genetic modification in extending the in vivo residence times of macrophage membrane-coated nanoparticles. This approach can be readily extended to modify other cell membrane-coated nanoparticles toward more favorable biomedical applications.


Subject(s)
Drug Delivery Systems , Nanoparticles , Mice , Animals , Drug Delivery Systems/methods , Macrophages/metabolism , Cell Membrane/metabolism , Cytoplasm
3.
ACS Nano ; 17(14): 13500-13509, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37435892

ABSTRACT

Malaria infected erythrocytes utilize the parasite protein VAR2CSA to bind to a unique presentation of chondroitin sulfate (CS) for their placenta specific tropism. Interestingly, many cancers express a similar form of CS, thereby termed oncofetal CS (ofCS). The distinctive tropism of malaria infected erythrocytes and the identification of oncofetal CS, therefore, represent potentially potent tools for cancer targeting. Here we describe an intriguing drug delivery platform that effectively mimics infected erythrocytes and their specificity for ofCS. We used a lipid catcher-tag conjugation system for the functionalization of erythrocyte membrane-coated drug carriers with recombinant VAR2CSA (rVAR2). We show that these malaria mimicking erythrocyte nanoparticles (MMENPs) loaded with docetaxel (DTX) specifically target and kill melanoma cells in vitro. We further demonstrate effective targeting and therapeutic efficacy in a xenografted melanoma model. These data thus provide a proof of concept for the use of a malaria biomimetic for tumor targeted drug delivery. Given the broad presentation of ofCS found across various types of malignancies, this biomimetic may therefore show potential as a broadly targeted cancer therapy against multiple tumor indications.


Subject(s)
Malaria, Falciparum , Malaria , Melanoma , Humans , Antigens, Protozoan/metabolism , Biomimetics , Chondroitin Sulfates/metabolism , Erythrocytes/metabolism , Malaria, Falciparum/metabolism , Plasmodium falciparum
4.
Adv Nanobiomed Res ; 3(2)2023 Feb.
Article in English | MEDLINE | ID: mdl-37151210

ABSTRACT

The highly multidrug-resistant (MDR) Gram-negative bacterial pathogen Acinetobacter baumannii is a top global health priority where an effective vaccine could protect susceptible populations and limit resistance acquisition. Outer membrane vesicles (OMVs) shed from Gram-negative bacteria are enriched with virulence factors and membrane lipids but heterogeneous in size and cargo. We report a vaccine platform combining precise and replicable nanoparticle technology with immunogenic A. baumannii OMVs (Ab-OMVs). Gold nanoparticle cores coated with Ab-OMVs (Ab-NPs) induced robust IgG titers in rabbits that enhanced human neutrophil opsonophagocytic killing and passively protected against lethal A. baumannii sepsis in mice. Active Ab-NP immunization in mice protected against sepsis and pneumonia, accompanied by B cell recruitment to draining lymph nodes, activation of dendritic cell markers, improved splenic neutrophil responses, and mitigation of proinflammatory cytokine storm. Nanoparticles are an efficient and efficacious platform for OMV vaccine delivery against A. baumannii and perhaps other high-priority MDR pathogens.

5.
Chem Commun (Camb) ; 59(33): 4962-4965, 2023 Apr 20.
Article in English | MEDLINE | ID: mdl-37014714

ABSTRACT

The small molecule 5,15-di(thiophen-2-yl) porphyrin (TP) was developed for new dual-ion symmetric organic batteries (DSOBs). It delivered a capacity of 150 mA h g-1 at 0.2 A g-1 with a high voltage of 2.7 V, and up to 1500 cycles were achieved. This work offers a new approach for developing high-performance dual-ion organic symmetric batteries.

6.
Adv Mater ; 35(31): e2211717, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37097076

ABSTRACT

While vaccines have been highly successful in protecting against various infections, there are still many high-priority pathogens for which there are no clinically approved formulations. To overcome this challenge, researchers have explored the use of nanoparticulate strategies for more effective antigen delivery to the immune system. Along these lines, nanotoxoids are a promising biomimetic platform that leverages cell membrane coating technology to safely deliver otherwise toxic bacterial antigens in their native form for antivirulence vaccination. Here, in order to further boost their immunogenicity, nanotoxoids formulated against staphylococcal α-hemolysin are embedded into a DNA-based hydrogel with immunostimulatory CpG motifs. The resulting nanoparticle-hydrogel composite is injectable and improves the in vivo delivery of vaccine antigens while simultaneously stimulating nearby immune cells. This leads to elevated antibody production and stronger antigen-specific cellular immune responses. In murine models of pneumonia and skin infection caused by methicillin-resistant Staphylococcus aureus, mice vaccinated with the hybrid vaccine formulation are well-protected. This work highlights the benefits of combining nanoparticulate antigen delivery systems with immunostimulatory hydrogels into a single platform, and the approach can be readily generalized to a wide range of infectious diseases.


Subject(s)
Bacterial Infections , Methicillin-Resistant Staphylococcus aureus , Vaccines , Animals , Mice , Hydrogels , Bacterial Infections/drug therapy , Bacterial Infections/prevention & control , Antigens , DNA
7.
ACS Nano ; 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36441916

ABSTRACT

Vaccination has become an increasingly attractive strategy for protecting against antibiotic-resistant infections. Nanovaccines based on the outer membrane from Gram-negative bacteria are appealing due to their multiantigenic nature and inherent immunogenicity. Here, we develop cellular nanodiscs made of bacterial outer membrane (OM-NDs), as a platform for antibacterial vaccination. Using Pseudomonas aeruginosa as a model pathogen, the resulting OM-NDs can effectively interact with antigen-presenting cells, exhibiting accelerated uptake and an improved capacity for immune stimulation. With their small size, the OM-NDs are also capable of efficiently transporting to the lymph nodes after in vivo administration. As a result, the nanovaccine is effective at eliciting potent humoral and cellular immune responses against P. aeruginosa. In a murine model of pneumonia, immunization with OM-NDs confers strong protection against subsequent lung infection, resulting in improved survival, reduced bacterial loads, and alleviation of immune overactivation. Overall, this report illustrates the advantages of cellular nanodiscs, which can be readily generalized to other pathogens and may be applied toward other biomedical applications.

8.
Nano Lett ; 22(23): 9672-9678, 2022 12 14.
Article in English | MEDLINE | ID: mdl-36448694

ABSTRACT

Anthrax infections caused by Bacillus anthracis are an ongoing bioterrorism and livestock threat worldwide. Current approaches for management, including extended passive antibody transfusion, antibiotics, and prophylactic vaccination, are often cumbersome and associated with low patient compliance. Here, we report on the development of an adjuvanted nanotoxoid vaccine based on macrophage membrane-coated nanoparticles bound with anthrax toxins. This design leverages the natural binding interaction of protective antigen, a key anthrax toxin, with macrophages. In a murine model, a single low-dose vaccination with the nanotoxoids generates long-lasting immunity that protects against subsequent challenge with anthrax toxins. Overall, this work provides a new approach to address the ongoing threat of anthrax outbreaks and bioterrorism by taking advantage of an emerging biomimetic nanotechnology.


Subject(s)
Anthrax Vaccines , Anthrax , Bacterial Toxins , Animals , Humans , Mice , Anthrax/prevention & control , Antigens, Bacterial , Bacillus anthracis , Nanotechnology
9.
Sci Adv ; 8(36): eabq5492, 2022 09 09.
Article in English | MEDLINE | ID: mdl-36083909

ABSTRACT

The rise in nosocomial infections caused by multidrug-resistant pathogens is a major public health concern. Patients taking immunosuppressants or chemotherapeutics are naturally more susceptible to infections. Thus, strategies for protecting immunodeficient individuals from infections are of great importance. Here, we investigate the effectiveness of a biomimetic nanotoxoid vaccine in defending animals with immunodeficiency against Pseudomonas aeruginosa. The nanotoxoids use a macrophage membrane coating to sequester and safely present bacterial virulence factors that would otherwise be too toxic to administer. Vaccination with the nanoformulation results in rapid and long-lasting immunity, protecting against lethal infections despite severe immunodeficiency. The nanovaccine can be administered through multiple routes and is effective in both pneumonia and septicemia models of infection. Mechanistically, protection is mediated by neutrophils and pathogen-specific antibodies. Overall, nanotoxoid vaccination is an attractive strategy to protect vulnerable patients and could help to mitigate the threat posed by antibiotic-resistant superbugs.


Subject(s)
Bacterial Infections , Pneumonia , Animals , Pseudomonas aeruginosa , Vaccination/methods , Virulence Factors
10.
Nat Mater ; 21(11): 1324-1332, 2022 11.
Article in English | MEDLINE | ID: mdl-36138145

ABSTRACT

Bioinspired microrobots capable of actively moving in biological fluids have attracted considerable attention for biomedical applications because of their unique dynamic features that are otherwise difficult to achieve by their static counterparts. Here we use click chemistry to attach antibiotic-loaded neutrophil membrane-coated polymeric nanoparticles to natural microalgae, thus creating hybrid microrobots for the active delivery of antibiotics in the lungs in vivo. The microrobots show fast speed (>110 µm s-1) in simulated lung fluid and uniform distribution into deep lung tissues, low clearance by alveolar macrophages and superb tissue retention time (>2 days) after intratracheal administration to test animals. In a mouse model of acute Pseudomonas aeruginosa pneumonia, the microrobots effectively reduce bacterial burden and substantially lessen animal mortality, with negligible toxicity. Overall, these findings highlight the attractive functions of algae-nanoparticle hybrid microrobots for the active in vivo delivery of therapeutics to the lungs in intensive care unit settings.


Subject(s)
Nanoparticles , Pneumonia, Bacterial , Mice , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/microbiology , Pseudomonas aeruginosa , Lung
11.
Nano Lett ; 22(17): 7057-7065, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35998891

ABSTRACT

Acinetobacter baumannii is a leading cause of antibiotic-resistant nosocomial infections with high mortality rates, yet there is currently no clinically approved vaccine formulation. During the onset of A. baumannii infection, neutrophils are the primary responders and play a major role in resisting the pathogen. Here, we design a biomimetic nanotoxoid for antivirulence vaccination by using neutrophil membrane-coated nanoparticles to safely capture secreted A. baumannii factors. Vaccination with the nanotoxoid formulation rapidly mobilizes innate immune cells and promotes pathogen-specific adaptive immunity. In murine models of pneumonia, septicemia, and superficial wound infection, immunization with the nanovaccine offers significant protection, improving survival and reducing signs of acute inflammation. Lower bacterial burdens are observed in vaccinated animals regardless of the infection route. Altogether, neutrophil nanotoxoids represent an effective platform for eliciting multivalent immunity to protect against multidrug-resistant A. baumannii in a wide range of disease conditions.


Subject(s)
Acinetobacter Infections , Acinetobacter baumannii , Sepsis , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Animals , Biomimetics , Disease Models, Animal , Mice , Neutrophils
12.
Adv Drug Deliv Rev ; 185: 114294, 2022 06.
Article in English | MEDLINE | ID: mdl-35436569

ABSTRACT

Vaccines have been highly successful in the management of many diseases. However, there are still numerous illnesses, both infectious and noncommunicable, for which there are no clinically approved vaccine formulations. While there are unique difficulties that must be overcome in the case of each specific disease, there are also a number of common challenges that have to be addressed for effective vaccine development. In recent years, bacterial membrane vesicles (BMVs) have received increased attention as a potent and versatile vaccine platform. BMVs are inherently immunostimulatory and are able to activate both innate and adaptive immune responses. Additionally, BMVs can be readily taken up and processed by immune cells due to their nanoscale size. Finally, BMVs can be modified in a variety of ways, including by genetic engineering, cargo loading, and nanoparticle coating, in order to create multifunctional platforms that can be leveraged against different diseases. Here, an overview of the interactions between BMVs and immune cells is provided, followed by discussion on the applications of BMV vaccine nanotechnology against bacterial infections, viral infections, and cancers.


Subject(s)
Nanoparticles , Neoplasms , Vaccines , Bacteria , Humans
13.
J Infect Dis ; 226(2): 319-323, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35262728

ABSTRACT

The protozoan pathogen Giardia lamblia is an important worldwide cause of diarrheal disease and malabsorption. Infection is managed with antimicrobials, although drug resistance and treatment failures are a clinical challenge. Prior infection provides significant protection, yet a human vaccine has not been realized. Individual antigens can elicit partial protection in experimental models, but protection is weaker than after prior infection. Here, we developed a multivalent nanovaccine by coating membranes derived from the parasite onto uniform and stable polymeric nanoparticles loaded with a mucosal adjuvant. Intranasal immunization with the nanovaccine induced adaptive immunity and effectively protected mice from G. lamblia infection.


Subject(s)
Giardia lamblia , Giardiasis , Nanoparticles , Parasites , Adjuvants, Immunologic , Animals , Giardiasis/parasitology , Giardiasis/prevention & control , Humans , Immunity, Mucosal , Mice
14.
Bioconjug Chem ; 33(4): 586-593, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35285617

ABSTRACT

Active targeting strategies aimed at improving drug homing while reducing systemic toxicity are widely being pursued in the growing field of nanomedicine. While they can be effective, these approaches often require the identification of cell-specific targets and in-depth knowledge of receptor binding interactions. More recently, there has been significant interest in biomimetic nanoformulations capable of replicating the properties of naturally occurring systems. In particular, the advent of cell membrane coating nanotechnology has enabled researchers to leverage the inherent tropisms displayed by living cells, bypassing many of the challenges associated with traditional bottom-up nanoengineering. In this work, we report on a biomimetic organotropic nanodelivery system for localizing therapeutic payloads to the lungs. Metastatic breast cancer exosomes, which are lung tropic due to their unique surface marker expression profile, are used to coat nanoparticle cores loaded with the anti-inflammatory drug dexamethasone. In vivo, these nanoparticles demonstrate enhanced accumulation in lung tissue and significantly reduce proinflammatory cytokine burden in a lung inflammation model. Overall, this work highlights the potential of using biomimetic organ-level delivery strategies for the management of certain disease conditions.


Subject(s)
Biomimetic Materials , Lung Diseases , Nanoparticles , Biomimetic Materials/chemistry , Biomimetic Materials/therapeutic use , Biomimetics , Drug Delivery Systems , Humans , Nanomedicine , Nanoparticles/chemistry , Nanotechnology
15.
Leukemia ; 36(4): 994-1005, 2022 04.
Article in English | MEDLINE | ID: mdl-34845316

ABSTRACT

Cancer vaccines are promising treatments to prevent relapse after chemotherapy in acute myeloid leukemia (AML) patients, particularly for those who cannot tolerate intensive consolidation therapies. Here, we report the development of an AML cell membrane-coated nanoparticle (AMCNP) vaccine platform, in which immune-stimulatory adjuvant-loaded nanoparticles are coated with leukemic cell membrane material. This AMCNP vaccination strategy stimulates leukemia-specific immune responses by co-delivering membrane-associated antigens along with adjuvants to antigen-presenting cells. To demonstrate that this AMCNP vaccine enhances leukemia-specific antigen presentation and T cell responses, we modified a murine AML cell line to express membrane-bound chicken ovalbumin as a model antigen. AMCNPs were efficiently acquired by antigen-presenting cells in vitro and in vivo and stimulated antigen cross-presentation. Vaccination with AMCNPs significantly enhanced antigen-specific T cell expansion and effector function compared with control vaccines. Prophylactic vaccination with AMCNPs enhanced cellular immunity and protected against AML challenge. Moreover, in an AML post-remission vaccination model, AMCNP vaccination significantly enhanced survival in comparison to vaccination with whole leukemia cell lysates. Collectively, AMCNPs retained AML-specific antigens, elicited enhanced antigen-specific immune responses, and provided therapeutic benefit against AML challenge.


Subject(s)
Cancer Vaccines , Leukemia, Myeloid, Acute , Nanoparticles , Animals , Antigen Presentation , Cell Membrane , Humans , Immunotherapy , Leukemia, Myeloid, Acute/drug therapy , Mice , Vaccination
16.
Angew Chem Int Ed Engl ; 61(2): e202113671, 2022 01 10.
Article in English | MEDLINE | ID: mdl-34694684

ABSTRACT

Effective endosomal escape after cellular uptake represents a major challenge in the field of nanodelivery, as the majority of drug payloads must localize to subcellular compartments other than the endosomes in order to exert activity. In nature, viruses can readily deliver their genetic material to the cytosol of host cells by triggering membrane fusion after endocytosis. For the influenza A virus, the hemagglutinin (HA) protein found on its surface fuses the viral envelope with the surrounding membrane at endosomal pH values. Biomimetic nanoparticles capable of endosomal escape were fabricated using a membrane coating derived from cells engineered to express HA on their surface. When evaluated in vitro, these virus-mimicking nanoparticles were able to deliver an mRNA payload to the cytosolic compartment of target cells, resulting in the successful expression of the encoded protein. When the mRNA-loaded nanoparticles were administered in vivo, protein expression levels were significantly increased in both local and systemic delivery scenarios. We therefore conclude that utilizing genetic engineering approaches to express viral fusion proteins on the surface of cell membrane-coated nanoparticles is a viable strategy for modulating the intracellular localization of encapsulated cargoes.


Subject(s)
Cytosol
17.
Mol Aspects Med ; 83: 101007, 2022 02.
Article in English | MEDLINE | ID: mdl-34353637

ABSTRACT

Vaccination is a modality that has been widely explored for the treatment of various diseases. To increase the potency of vaccine formulations, immunostimulatory adjuvants have been regularly exploited, and the stimulator of interferon genes (STING) signaling pathway has recently emerged as a remarkable therapeutic target. STING is an endogenous protein on the endoplasmic reticulum that is a downstream sensor to cytosolic DNA. Upon activation, STING initiates a series of intracellular signaling cascades that ultimately generate potent type I interferon-mediated immune responses. Both natural and synthetic agonists have been used to stimulate the STING pathway, but they are usually administered locally due to low bioavailability, instability, and difficulty in bypassing the plasma membrane. With excellent pharmacokinetic profiles and versatility, nanocarriers can address many of these challenges and broaden the application of STING vaccines. Along these lines, STING-inducing nanovaccines are being developed to address a wide range of diseases. In this review, we discuss the recent advances in STING nanovaccines for anticancer, antiviral, and antibacterial applications.


Subject(s)
Communicable Diseases , Neoplasms , Humans , Immunotherapy , Membrane Proteins , Neoplasms/drug therapy , Signal Transduction
18.
Cancer Cell Int ; 21(1): 636, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34844614

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs), which are endogenous non-coding RNAs, are associated with various biological processes including development, homeostatic maintenance, and pathological responses. Accumulating evidence has implicated non-coding RNAs in cancer progression, and the role of circRNAs in particular has drawn wide attention. However, circRNA expression patterns and functions in hepatocellular carcinoma (HCC) remain poorly understood. METHODS: CircRNA sequencing was performed to screen differentially expressed circRNAs in HCC. Northern blotting, quantitative real-time polymerase chain reaction, nucleocytoplasmic fractionation, and fluorescence in situ hybridization analyses were conducted to evaluate the expression and localization of circSLC7A11 in HCC tissues and cells. CircSLC7A11 expression levels were modified in cultured HCC cell lines to explore the association between the expression of circSLC7A11 and the malignant behavior of these cells using several cell-based assays. The modified cells were implanted into immunocompetent nude mice to assess tumor growth and metastasis in vivo. We applied bioinformatics methods, RNA pulldown, RNA immunoprecipitation, and luciferase reporter assays to explore the mechanisms of circSLC7A11 in HCC. RESULTS: CircSLC7A11 (hsa_circ_0070975) was conserved and dramatically overexpressed in HCC tissues and cells. HCC patients showing high circSLC7A11 expression had worse prognoses. Our in vitro and in vivo experiments showed that circSLC7A11 markedly accelerated HCC progression and metastasis through the circSLC7A11/miR-330-3p/CDK1 axis. CONCLUSIONS: The acceleration of HCC progression and metastasis by circSLC7A11 through the circSLC7A11/miR-330-3p/CDK1 axis suggests that circSLC7A11 is a potential novel diagnostic and therapeutic target for HCC treatment.

19.
Adv Mater ; 33(49): e2103505, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34599770

ABSTRACT

The combination of immunotherapy with other forms of treatment is an emerging strategy for boosting antitumor responses. By combining multiple modes of action, these combinatorial therapies can improve clinical outcomes through unique synergisms. Here, a microrobot-based strategy that integrates tumor tissue disruption with biological stimulation is shown for cancer immunotherapy. The microrobot is fabricated by loading bacterial outer membrane vesicles onto a self-propelling micromotor, which can react with water to generate a propulsion force. When administered intratumorally to a solid tumor, the disruption of the local tumor tissue coupled with the delivery of an immunostimulatory payload leads to complete tumor regression. Additionally, treatment of the primary tumor results in the simultaneous education of the host immune system, enabling it to control the growth of distant tumors. Overall, this work introduces a distinct application of microrobots in cancer immunotherapy and offers an attractive strategy for amplifying cancer treatment efficacy when combined with conventional therapies.


Subject(s)
Immunotherapy , Neoplasms , Humans , Immunity , Immunotherapy/methods , Neoplasms/drug therapy
20.
Nat Commun ; 12(1): 4136, 2021 07 06.
Article in English | MEDLINE | ID: mdl-34230486

ABSTRACT

Acute pancreatitis is a disease associated with suffering and high lethality. Although the disease mechanism is unclear, phospholipase A2 (PLA2) produced by pancreatic acinar cells is a known pathogenic trigger. Here, we show macrophage membrane-coated nanoparticles with a built-in 'lure and kill' mechanism (denoted 'MΦ-NP(L&K)') for the treatment of acute pancreatitis. MΦ-NP(L&K) are made with polymeric cores wrapped with natural macrophage membrane doped with melittin and MJ-33. The membrane incorporated melittin and MJ-33 function as a PLA2 attractant and a PLA2 inhibitor, respectively. These molecules, together with membrane lipids, work synergistically to lure and kill PLA2 enzymes. These nanoparticles can neutralize PLA2 activity in the sera of mice and human patients with acute pancreatitis in a dose-dependent manner and suppress PLA2-induced inflammatory response accordingly. In mouse models of both mild and severe acute pancreatitis, MΦ-NP(L&K) confer effective protection against disease-associated inflammation, tissue damage and lethality. Overall, this biomimetic nanotherapeutic strategy offers an anti-PLA2 treatment option that might be applicable to a wide range of PLA2-mediated inflammatory disorders.


Subject(s)
Acute Disease/therapy , Macrophages , Nanoparticles/therapeutic use , Pancreatitis/therapy , Animals , Cytokines , Disease Models, Animal , Female , Humans , Inflammation , Melitten , Mice , Phospholipases A2/blood , THP-1 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...