Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 155
Filter
1.
Proc Natl Acad Sci U S A ; 121(24): e2319179121, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38833467

ABSTRACT

To test the hypothesis that early-life adversity accelerates the pace of biological aging, we analyzed data from the Dutch Hunger Winter Families Study (DHWFS, N = 951). DHWFS is a natural-experiment birth-cohort study of survivors of in-utero exposure to famine conditions caused by the German occupation of the Western Netherlands in Winter 1944 to 1945, matched controls, and their siblings. We conducted DNA methylation analysis of blood samples collected when the survivors were aged 58 to quantify biological aging using the DunedinPACE, GrimAge, and PhenoAge epigenetic clocks. Famine survivors had faster DunedinPACE, as compared with controls. This effect was strongest among women. Results were similar for GrimAge, although effect-sizes were smaller. We observed no differences in PhenoAge between survivors and controls. Famine effects were not accounted for by blood-cell composition and were similar for individuals exposed early and later in gestation. Findings suggest in-utero undernutrition may accelerate biological aging in later life.


Subject(s)
Aging , DNA Methylation , Famine , Prenatal Exposure Delayed Effects , Humans , Female , Prenatal Exposure Delayed Effects/epidemiology , Pregnancy , Middle Aged , Netherlands/epidemiology , Male , Epigenesis, Genetic , Starvation
2.
Stroke ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818733

ABSTRACT

BACKGROUND: Previous studies yielded conflicting results about the influence of blood pressure (BP) and antihypertensive treatment on cerebral small vessel disease. Here, we conducted a Mendelian randomization study to investigate the effect of BP and antihypertensive drugs on cerebral small vessel disease. METHODS: We extracted single-nucleotide polymorphisms for systolic BP and diastolic BP from a genome-wide association study (N=757 601) and screened single-nucleotide polymorphisms associated with calcium channel blockers, thiazides, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, and ß-blockers from public resources as instrumental variables. Then, we chose the genome-wide association study of white matter hyperintensity (WMH; N=18 381), cerebral microbleed (3556 cases, 22 306 controls), white matter perivascular space (9317 cases, 29 281 controls), basal ganglia perivascular space (BGPVS; 8950 cases, 29 953 controls), hippocampal perivascular space (HIPPVS; 9163 cases, 29 708 controls), and lacunar stroke (6030 cases, 248 929 controls) as outcome data sets. Subsequently, we conducted a 2-sample Mendelian randomization analysis. RESULTS: We found that elevated systolic BP significantly increases the risk of BGPVS (odds ratio [OR], 1.05 [95% CI, 1.04-1.07]; P=1.72×10-12), HIPPVS (OR, 1.04 [95% CI, 1.02-1.05]; P=2.71×10-7), and lacunar stroke (OR, 1.41 [95% CI, 1.30-1.54]; P=4.97×10-15). There was suggestive evidence indicating that elevated systolic BP is associated with higher WMH volume (ß=0.061 [95% CI, 0.018-0.105]; P=5.58×10-3) and leads to an increased risk of cerebral microbleed (OR, 1.16 [95% CI, 1.04-1.29]; P=7.17×10-3). Elevated diastolic BP was significantly associated with higher WMH volume (ß=0.087 [95% CI, 0.049-0.124]; P=5.23×10-6) and significantly increased the risk of BGPVS (OR, 1.05 [95% CI, 1.04-1.06]; P=1.20×10-16), HIPPVS (OR, 1.03 [95% CI, 1.02-1.04]; P=2.96×10-6), and lacunar stroke (OR, 1.31 [95% CI, 1.21-1.41]; P=2.67×10-12). The use of calcium channel blocker to lower BP was significantly associated with lower WMH volume (ß=-0.287 [95% CI, -0.408 to -0.165]; P=4.05×10-6) and significantly reduced the risk of BGPVS (OR, 0.85 [95% CI, 0.81-0.89]; P=8.41×10-19) and HIPPVS (OR, 0.88 [95% CI, 0.85-0.92]; P=6.72×10-9). CONCLUSIONS: Our findings contribute to a better understanding of the pathogenesis of cerebral small vessel disease. Additionally, the utilization of calcium channel blockers to decrease BP can effectively reduce the likelihood of WMH, BGPVS, and HIPPVS. These findings offer valuable insights for the management and prevention of cerebral small vessel disease.

3.
Biomacromolecules ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771294

ABSTRACT

Preventing bacterial infections is a crucial aspect of wound healing. There is an urgent need for multifunctional biomaterials without antibiotics to promote wound healing. In this study, we fabricated a guar gum (GG)-based nanocomposite hydrogel, termed GBTF, which exhibited photothermal antibacterial therapy for infected wound healing. The GBTF hydrogel formed a cross-linked network through dynamic borate/diol interactions between GG and borax, thereby exhibiting simultaneously self-healing, adaptable, and injectable properties. Additionally, tannic acid (TA)/Fe3+ nanocomplexes (NCs) were incorporated into the hydrogel to confer photothermal antibacterial properties. Under the irradiation of an 808 nm near-infrared laser, the TA/Fe3+ NCs in the hydrogel could rapidly generate heat, leading to the disruption of bacterial cell membranes and subsequent bacterial eradication. Furthermore, the hydrogels exhibited good cytocompatibility and hemocompatibility, making them a precandidate for preclinical and clinical applications. Finally, they could significantly promote bacteria-infected wound healing by reducing bacterial viability, accelerating collagen deposition, and promoting epithelial remodeling. Therefore, the multifunctional GBTF hydrogel, which was composed entirely of natural substances including guar gum, borax, and polyphenol/ferric ion NCs, showed great potential for regenerating infected skin wounds in clinical applications.

4.
Lancet Reg Health West Pac ; 46: 101060, 2024 May.
Article in English | MEDLINE | ID: mdl-38638410

ABSTRACT

Background: By combining theory-driven and data-driven methods, this study aimed to develop dementia predictive algorithms among Chinese older adults guided by the cognitive footprint theory. Methods: Electronic medical records from the Clinical Data Analysis and Reporting System in Hong Kong were employed. We included patients with dementia diagnosed at 65+ between 2010 and 2018, and 1:1 matched dementia-free controls. We identified 51 features, comprising exposures to established modifiable factors and other factors before and after 65 years old. The performances of four machine learning models, including LASSO, Multilayer perceptron (MLP), XGBoost, and LightGBM, were compared with logistic regression models, for all patients and subgroups by age. Findings: A total of 159,920 individuals (40.5% male; mean age [SD]: 83.97 [7.38]) were included. Compared with the model included established modifiable factors only (area under the curve [AUC] 0.689, 95% CI [0.684, 0.694]), the predictive accuracy substantially improved for models with all factors (0.774, [0.770, 0.778]). Machine learning and logistic regression models performed similarly, with AUC ranged between 0.773 (0.768, 0.777) for LASSO and 0.780 (0.776, 0.784) for MLP. Antipsychotics, education, antidepressants, head injury, and stroke were identified as the most important predictors in the total sample. Age-specific models identified different important features, with cardiovascular and infectious diseases becoming prominent in older ages. Interpretation: The models showed satisfactory performances in identifying dementia. These algorithms can be used in clinical practice to assist decision making and allow timely interventions cost-effectively. Funding: The Research Grants Council of Hong Kong under the Early Career Scheme 27110519.

5.
J Agric Food Chem ; 72(18): 10366-10375, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38651967

ABSTRACT

Intestinal stem cells (ISCs) sustain epithelial renewal by dynamically altering behaviors of proliferation and differentiation in response to various nutrition and stress inputs. However, how ISCs integrate bioactive substance morin cues to protect against heat-stable enterotoxin b (STb) produced by Escherichia coli remains an uncertain question with implications for treating bacterial diarrhea. Our recent work showed that oral mulberry leaf-derived morin improved the growth performance in STb-challenged mice. Furthermore, morin supplementation reinstated the impaired small-intestinal epithelial structure and barrier function by stimulating ISC proliferation and differentiation as well as supporting intestinal organoid expansion ex vivo. Importantly, the Wnt/ß-catenin pathway, an ISC fate commitment signal, was reactivated by morin to restore the jejunal crypt-villus architecture in response to STb stimulation. Mechanically, the extracellular morin-initiated ß-catenin axis is dependent or partially dependent on the Wnt membrane receptor Frizzled7 (FZD7). Our data reveal an unexpected role of leaf-derived morin, which represents molecular signaling targeting the FZD7 platform instrumental for controlling ISC regeneration upon STb injury.


Subject(s)
Enterotoxins , Flavonoids , Frizzled Receptors , Morus , Plant Leaves , Stem Cells , beta Catenin , Animals , Morus/chemistry , Flavonoids/pharmacology , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , beta Catenin/metabolism , beta Catenin/genetics , Mice , Plant Leaves/chemistry , Plant Leaves/metabolism , Stem Cells/drug effects , Stem Cells/metabolism , Stem Cells/cytology , Humans , Enterotoxins/metabolism , Cell Proliferation/drug effects , Wnt Signaling Pathway/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Intestinal Mucosa/metabolism , Intestinal Mucosa/drug effects , Intestines/drug effects , Intestines/cytology , Flavones
6.
Nat Microbiol ; 9(5): 1256-1270, 2024 May.
Article in English | MEDLINE | ID: mdl-38649412

ABSTRACT

Epstein-Barr virus (EBV) can infect both B cells and epithelial cells (ECs), causing diseases such as mononucleosis and cancer. It enters ECs via Ephrin receptor A2 (EphA2). The function of interferon-induced transmembrane protein-1 (IFITM1) in EBV infection of ECs remains elusive. Here we report that IFITM1 inhibits EphA2-mediated EBV entry into ECs. RNA-sequencing and clinical sample analysis show reduced IFITM1 in EBV-positive ECs and a negative correlation between IFITM1 level and EBV copy number. IFITM1 depletion increases EBV infection and vice versa. Exogenous soluble IFITM1 effectively prevents EBV infection in vitro and in vivo. Furthermore, three-dimensional structure prediction and site-directed mutagenesis demonstrate that IFITM1 interacts with EphA2 via its two specific residues, competitively blocking EphA2 binding to EBV glycoproteins. Finally, YTHDF3, an m6A reader, suppresses IFITM1 via degradation-related DEAD-box protein 5 (DDX5). Thus, this study underscores IFITM1's crucial role in blocking EphA2-mediated EBV entry into ECs, indicating its potential in preventing EBV infection.


Subject(s)
Antigens, Differentiation , Ephrin-A2 , Epithelial Cells , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Receptor, EphA2 , Virus Internalization , Humans , Herpesvirus 4, Human/physiology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/metabolism , Epithelial Cells/virology , Epithelial Cells/metabolism , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/metabolism , Receptor, EphA2/metabolism , Ephrin-A2/metabolism , Ephrin-A2/genetics , Antigens, Differentiation/metabolism , Antigens, Differentiation/genetics , Animals , HEK293 Cells , Protein Binding , Mice , Cell Line
7.
medRxiv ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38633796

ABSTRACT

Background: Exposure to famine in the prenatal period is associated with an increased risk of metabolic disease, including obesity and type-2 diabetes. We employed nuclear magnetic resonance (NMR) metabolomic profiling to provide a deeper insight into the metabolic changes associated with survival of prenatal famine exposure during the Dutch Famine at the end of World War II and explore their link to disease. Methods: NMR metabolomics data were generated from serum in 480 individuals prenatally exposed to famine (mean 58.8 years, 0.5 SD) and 464 controls (mean 57.9 years, 5.4 SD). We tested associations of prenatal famine exposure with levels of 168 individual metabolic biomarkers and compared the metabolic biomarker signature of famine exposure with those of 154 common diseases. Results: Prenatal famine exposure was associated with higher concentrations of branched-chain amino acids ((iso)-leucine), aromatic amino acid (tyrosine), and glucose in later life (0.2-0.3 SD, p < 3x10-3). The metabolic biomarker signature of prenatal famine exposure was positively correlated to that of incident type-2 diabetes (r = 0.77, p = 3x10-27), also when re-estimating the signature of prenatal famine exposure among individuals without diabetes (r = 0.67, p = 1x10-18). Remarkably, this association extended to 115 common diseases for which signatures were available (0.3 ≤ r ≤ 0.9, p < 3.2x10-4). Correlations among metabolic signatures of famine exposure and disease outcomes were attenuated when the famine signature was adjusted for body mass index. Conclusions: Prenatal famine exposure is associated with a metabolic biomarker signature that strongly resembles signatures of a diverse set of diseases, an observation that can in part be attributed to a shared involvement of obesity.

8.
Accid Anal Prev ; 200: 107558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38547575

ABSTRACT

Urban inter-tunnel weaving (UIW) sections are characterized by short lengths and frequent lane-changing behaviors in the area, commonly used for fast through traffic. These features increase the likelihood of collisions, however, collision risk assessment in this area has been inadequate. The aim of this study was to evaluate the potential collision risk of urban inter-tunnel weaving (UIW) sections in mixed lane-changing traffic conditions in morning rush hours, utilizing surrogate safety measures. The investigation involved the collection of trajectory data via an unmanned aerial vehicle (UAV). Time to collision (TTC) and extended time to collision (ETTC) were chosen as surrogate safety indicators. The estimation of collision risk was conducted using Extreme Value Theory (EVT) by means ofsurrogate safety indicators. It was found that the threshold of TTC and ETTC in this area was 1.25 s. Furthermore, a comprehensive evaluation of collision risks associated with various vehicle types was performed, revealing an inverse relationship between thecollisions riskof vehicles in mixed traffic and their size. It was worth noting that while heavy vehicles exhibit a lower collision risk, they resulted in the highest energy loss and inflicted greater harm in the event of a collision. By an examination of the distribution features pertaining to conflict types during the operation of heavy vehicles, it showed that the highest likelihood of conflict with heavy vehicles occurred when adjacent lanes are involved. Consequently, the implementation of assisted driving technology for heavy vehicles was imperative in order to mitigate the risk associated with side collisions.


Subject(s)
Accidents, Traffic , Automobile Driving , Humans , Accidents, Traffic/prevention & control , Risk Assessment , Probability , Fatigue
9.
10.
Phytomedicine ; 128: 155363, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493715

ABSTRACT

BACKGROUND: Coccidiosis is a rapidly spreading and acute parasitic disease that seriously threatening the intestinal health of poultry. Matrine from leguminous plants has anthelmintic and anti-inflammatory properties. PURPOSE: This assay was conducted to explore the protective effects of Matrine and the AntiC (a Matrine compound) on Eimeria necatrix (EN)-infected chick small intestines and to provide a nutritional intervention strategy for EN injury. STUDY DESIGN: The in vivo (chick) experiment: A total of 392 one-day-old yellow-feathered broilers were randomly assigned to six groups in a 21-day study: control group, 350 mg/kg Matrine group, 500 mg/kg AntiC group, EN group, and EN + 350 mg/kg Matrine group, EN + 500 mg/kg AntiC group. The in vitro (chick intestinal organoids, IOs): The IOs were treated with PBS, Matrine, AntiC, 3 µM CHIR99021, EN (15,000 EN sporozoites), EN + Matrine, EN + AntiC, EN + Matrine + CHIR99021, EN + AntiC + CHIR99021. METHODS: The structural integrity of chicks jejunal crypt-villus axis was evaluated by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). And the activity of intestinal stem cells (ISCs) located in crypts was assessed by in vitro expansion advantages of a primary in IOs model. Then, the changes of Wnt/ß-catenin signaling in jejunal tissues and IOs were detected by Real-Time qPCR,Western blotting and immunohistochemistry. RESULTS: The results showed that dietary supplementation with Matrine or AntiC rescued the jejunal injury caused by EN, as indicated by increased villus height, reduced crypt hyperplasia, and enhanced expression of tight junction proteins. Moreover, there was less budding efficiency of the IOs expanded from jejunal crypts of chicks in the EN group than that in the Matrine and AntiC group, respectively. Further investigation showed that AntiC and Matrine inhibited EN-stimulated Wnt/ß-catenin signaling. The fact that Wnt/ß-catenin activation via CHIR99021 led to the failure of Matrine and AntiC to rescue damaged ISCs confirmed the dominance of this signaling. CONCLUSION: Our results suggest that Matrine and AntiC inhibit ISC proliferation and promote ISC differentiation into absorptive cells by preventing the hyperactivation of Wnt/ß-catenin signaling, thereby standardizing the function of ISC proliferation and differentiation, which provides new insights into mitigating EN injury by Matrine and AntiC.


Subject(s)
Alkaloids , Chickens , Coccidiosis , Eimeria , Matrines , Poultry Diseases , Quinolizines , Wnt Signaling Pathway , Animals , Quinolizines/pharmacology , Alkaloids/pharmacology , Wnt Signaling Pathway/drug effects , Eimeria/drug effects , Coccidiosis/drug therapy , Poultry Diseases/drug therapy , Poultry Diseases/parasitology , Stem Cells/drug effects , Intestine, Small/drug effects , Intestine, Small/parasitology
11.
Neurobiol Aging ; 136: 23-33, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38301452

ABSTRACT

Biological aging is the correlated decline of multi-organ system integrity central to the etiology of many age-related diseases. A novel epigenetic measure of biological aging, DunedinPACE, is associated with cognitive dysfunction, incident dementia, and mortality. Here, we tested for associations between DunedinPACE and structural MRI phenotypes in three datasets spanning midlife to advanced age: the Dunedin Study (age=45 years), the Framingham Heart Study Offspring Cohort (mean age=63 years), and the Alzheimer's Disease Neuroimaging Initiative (mean age=75 years). We also tested four additional epigenetic measures of aging: the Horvath clock, the Hannum clock, PhenoAge, and GrimAge. Across all datasets (total N observations=3380; total N individuals=2322), faster DunedinPACE was associated with lower total brain volume, lower hippocampal volume, greater burden of white matter microlesions, and thinner cortex. Across all measures, DunedinPACE and GrimAge had the strongest and most consistent associations with brain phenotypes. Our findings suggest that single timepoint measures of multi-organ decline such as DunedinPACE could be useful for gauging nervous system health.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Aged , Brain/pathology , Aging/genetics , Alzheimer Disease/genetics , Cognitive Dysfunction/pathology , Biomarkers , Epigenesis, Genetic
12.
Ann Neurol ; 95(6): 1069-1079, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38407506

ABSTRACT

OBJECTIVE: People who eat healthier diets are less likely to develop dementia, but the biological mechanism of this protection is not well understood. We tested the hypothesis that healthy diet protects against dementia because it slows the pace of biological aging. METHODS: We analyzed Framingham Offspring Cohort data. We included participants ≥60 years-old, free of dementia and having dietary, epigenetic, and follow-up data. We assessed healthy diet as long-term adherence to the Mediterranean-Dash Intervention for Neurodegenerative Delay diet (MIND, over 4 visits spanning 1991-2008). We measured the pace of aging from blood DNA methylation data collected in 2005-2008 using the DunedinPACE epigenetic clock. Incident dementia and mortality were defined using study records compiled from 2005 to 2008 visit through 2018. RESULTS: Of n = 1,644 included participants (mean age 69.6, 54% female), n = 140 developed dementia and n = 471 died over 14 years of follow-up. Greater MIND score was associated with slower DunedinPACE and reduced risks for dementia and mortality. Slower DunedinPACE was associated with reduced risks for dementia and mortality. In mediation analysis, slower DunedinPACE accounted for 27% of the diet-dementia association and 57% of the diet-mortality association. INTERPRETATION: Findings suggest that slower pace of aging mediates part of the relationship of healthy diet with reduced dementia risk. Monitoring pace of aging may inform dementia prevention. However, a large fraction of the diet-dementia association remains unexplained and may reflect direct connections between diet and brain aging that do not overlap other organ systems. Investigation of brain-specific mechanisms in well-designed mediation studies is warranted. ANN NEUROL 2024;95:1069-1079.


Subject(s)
Aging , Dementia , Humans , Male , Female , Dementia/epidemiology , Dementia/prevention & control , Aged , Middle Aged , Diet, Healthy , Cohort Studies , Risk Factors , DNA Methylation , Aged, 80 and over , Diet, Mediterranean , Longitudinal Studies
13.
J Control Release ; 367: 248-264, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272398

ABSTRACT

As a potential treatment strategy for low immunogenic triple negative breast cancer (TNBC), photodynamic therapy (PDT) induced antitumor immunotherapy is greatly limited by the immunosuppressive tumor microenvironment (ITM), especially the M2 phenotype tumor-associated macrophages (TAMs). The balance of arginine metabolism plays an important role in TAMs polarization. Herein, a multifunctional nanoplatform (defined as HN-HFPA) was employed to burst the anti-tumor immunity of TNBC post PDT by reeducating TAMs through interfering the TAMs-associated arginine metabolism. The L-arginine (L-Arg) was loaded in the hollow cavity of HN-HFPA, which could not only generate nitric oxide (NO) for tumor therapy, but also serve as a substrate of arginine metabolism pathway. As an inhibitor of arginases-1 (Arg-1) of M2 TAMs, L-norvaline (L-Nor) was modified to the hyaluronic acid (HA), and coated in the surface of HFPA. After degradation of HA by hyaluronidase in tumor tissue and GSH-mediated disintegration, HN-HFPA depleted intracellular GSH, produced remarkable reactive oxygen species (ROS) under light irradiation and released L-Arg to generate NO, which induced tumor immunogenic cell death (ICD). Real-time ultrasound imaging of tumor was realized taking advantage of the gas feature of NO. The L-Nor suppressed the Arg-1 overexpressed in M2, which skewed the balance of arginine metabolism and reversed the ITM with increased ratios of M1 and CD8+ T cells, finally resulted in amplified antitumor immune response and apparent tumor metastasis inhibition. This study remodeled ITM to strengthen immune response post PDT, which provided a promising treatment strategy for TNBC.


Subject(s)
Nanoparticles , Neoplasms , Triple Negative Breast Neoplasms , Humans , CD8-Positive T-Lymphocytes , Triple Negative Breast Neoplasms/drug therapy , Tumor-Associated Macrophages , Immunotherapy , Arginine , Hyaluronic Acid , Immunosuppressive Agents , Nitric Oxide , Tumor Microenvironment , Cell Line, Tumor
14.
Article in English | MEDLINE | ID: mdl-38277251

ABSTRACT

We conduct two in-lab experiments (N=93) to evaluate the effectiveness of Gantt charts, extended Gantt charts, and stringline charts for visualizing fixed-order event sequence data. We first formulate five types of event sequences and define three types of sequence elements: point events, interval events, and the temporal gaps between them. Our two experiments focus on event sequences with a pre-defined, fixed order, and measure task error rates and completion time. The first experiment shows single sequences and assesses the three charts' performance in comparing event duration or gap. The second experiment shows multiple sequences and evaluates how well the charts reveal temporal patterns. The results suggest that when visualizing single fixed-order event sequences, 1) Gantt and extended Gantt charts lead to comparable error rates in the duration-comparing task; 2) Gantt charts exhibit either shorter or equal completion time than extended Gantt charts; 3) both Gantt and extended Gantt charts demonstrate shorter completion times than stringline charts; 4) however, stringline charts outperform the other two charts with fewer errors in the comparing task when event type counts are high. Additionally, when visualizing multiple point-based fixed-order event sequences, stringline charts require less time than Gantt charts for people to find temporal patterns. Based on these findings, we discuss design opportunities for visualizing fixed-order event sequences and discuss future avenues for optimizing these charts.

15.
Small ; 20(1): e2304835, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37653619

ABSTRACT

Photoelectrochemical (PEC) water splitting represents an attractive strategy to realize the conversion from solar energy to hydrogen energy, but severe charge recombination in photoanodes significantly limits the conversion efficiency. Herein, a unique BiVO4 (BVO) nanobowl (NB) heterojunction photoanode, which consists of [001]-oriented BiOCl underlayer and BVO nanobowls containing embedded BiOCl nanocrystals, is fabricated by nanosphere lithography followed by in situ transformation. Experimental characterizations and theoretical simulation prove that nanobowl morphology can effectively enhance light absorption while reducing carrier diffusion path. Density functional theory (DFT) calculations show the tendency of electron transfer from BVO to BiOCl. The [001]-oriented BiOCl underlayer forms a compact type II heterojunction with the BVO, favoring electron transfer from BVO through BiOCl to the substrate. Furthermore, the embedded BiOCl nanoparticles form a bulk heterojunction to facilitate bulk electron transfer. Consequently, the dual heterojunctions engineered BVO/BiOCl NB photoanode exhibits attractive PEC performance toward water oxidation with an excellent bulk charge separation efficiency of 95.5%, and a remarkable photocurrent density of 3.38 mA cm-2 at 1.23 V versus reversible hydrogen electrode, a fourfold enhancement compared to the flat BVO counterpart. This work highlights the great potential of integrating dual heterojunctions engineering and morphology engineering in fabricating high-performance photoelectrodes toward efficient solar conversion.

16.
J Exp Bot ; 75(5): 1493-1509, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-37952109

ABSTRACT

Herbivore-associated elicitors (HAEs) are active molecules produced by herbivorous insects. Recognition of HAEs by plants induces defence that resist herbivore attacks. We previously demonstrated that the tomato red spider mite Tetranychus evansi triggered defence in Nicotiana benthamiana. However, our knowledge of HAEs from T. evansi remains limited. Here, we characterize a novel HAE, Te16, from T. evansi and dissect its function in mite-plant interactions. We investigate the effects of Te16 on spider mites and plants by heterologous expression, virus-induced gene silencing assay, and RNA interference. Te16 induces cell death, reactive oxygen species (ROS) accumulation, callose deposition, and jasmonate (JA)-related responses in N. benthamiana leaves. Te16-mediated cell death requires a calcium signalling pathway, cytoplasmic localization, the plant co-receptor BAK1, and the signalling components SGT1 and HSP90. The active region of Te16-induced cell death is located at amino acids 114-293. Moreover, silencing Te16 gene in T. evansi reduces spider mite survival and hatchability, but expressing Te16 in N. benthamiana leaves enhances plant resistance to herbivores. Finally, Te16 gene is specific to Tetranychidae species and is highly conserved in activating plant immunity. Our findings reveal a novel salivary protein produced by spider mites that elicits plant defence and resistance to insects, providing valuable clues for pest management.


Subject(s)
Solanum lycopersicum , Tetranychidae , Animals , Herbivory , Tetranychidae/physiology , Nicotiana/genetics , Solanum lycopersicum/genetics , Plant Leaves
17.
Int J Comput Assist Radiol Surg ; 19(3): 449-457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37787939

ABSTRACT

PURPOSE: Scanning path planning is an essential technology for fully automated ultrasound (US) robotics. During biliary scanning, the subcostal boundary is critical body surface landmarks for scanning path planning but are often invisible, depending on the individual. This study developed a method of estimating the rib region for scanning path planning toward fully automated robotic US systems. METHODS: We proposed a method for determining the rib region using RGB-D images and respiratory variation. We hypothesized that detecting the rib region would be possible based on changes in body surface position due to breathing. We generated a depth difference image by finding the difference between the depth image taken at the resting inspiratory position and the depth image taken at the maximum inspiratory position, which clearly shows the rib region. The boundary position of the subcostal was then determined by applying training using the YOLOv5 object detection model to this depth difference image. RESULTS: In the experiments with healthy subjects, the proposed method of rib detection using the depth difference image marked an intersection over union (IoU) of 0.951 and average confidence of 0.77. The average error between the ground truth and predicted positions was 16.5 mm in 3D space. The results were superior to rib detection using only the RGB image. CONCLUSION: The proposed depth difference imaging method, which measures respiratory variation, was able to accurately estimate the rib region without contact and physician intervention. It will be useful for planning the scan path during the biliary imaging.


Subject(s)
Imaging, Three-Dimensional , Robotics , Humans , Imaging, Three-Dimensional/methods , Ultrasonography/methods , Robotics/methods , Radionuclide Imaging , Ribs
18.
Bioresour Technol ; 393: 130047, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37989421

ABSTRACT

A salt-tolerant strain, Pseudomonas mendocina A4, was isolated from brackish-water ponds showing simultaneous heterotrophic nitrification-aerobic denitrification and phosphorus removal capability. The optimal conditions for nitrogen and phosphate removal of strain A4 were pH 7-8, carbon/nitrogen ratio 10, phosphorus/nitrogen ratio 0.2, temperature 30 °C, and salinity range of 0-5 % using sodium succinate as the carbon source. The nitrogen and phosphate removal efficiencies were 96-100 % and 88-96 % within 24 h, respectively. The nitrogen and phosphate removal processes were matched with the modified Gompertz model, and the underlying mechanisms were confirmed by the activities of key metabolic enzymes. Under 10 % salinity, the immobilization technology was employed to enhance the nitrogen and phosphate removal efficiencies of strain A4, achieving 87 % and 76 %, respectively. These findings highlight the potential application of strain A4 in both freshwater and marine culture wastewater treatment.


Subject(s)
Denitrification , Nitrogen Radioisotopes , Pseudomonas mendocina , Phosphates , Pseudomonas mendocina/metabolism , Nitrogen/metabolism , Aerobiosis , Nitrification , Phosphorus , Heterotrophic Processes , Carbon , Nitrites/chemistry
19.
Lancet Reg Health West Pac ; 43: 100969, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38076326

ABSTRACT

Background: Hong Kong contained COVID-19 for two years but experienced a large epidemic of Omicron BA.2 in early 2022 and endemic transmission of Omicron subvariants thereafter. We reflected on pandemic preparedness and responses by assessing COVID-19 transmission and associated disease burden in the context of implementation of various public health and social measures (PHSMs). Methods: We examined the use and impact of pandemic controls in Hong Kong by analysing data on more than 1.7 million confirmed COVID-19 cases and characterizing the temporal changes non-pharmaceutical and pharmaceutical interventions implemented from January 2020 through to 30 December 2022. We estimated the daily effective reproductive number (Rt) to track changes in transmissibility and effectiveness of community-based measures against infection over time. We examined the temporal changes of pharmaceutical interventions, mortality rate and case-fatality risks (CFRs), particularly among older adults. Findings: Hong Kong experienced four local epidemic waves predominated by the ancestral strain in 2020 and early 2021 and prevented multiple SARS-CoV-2 variants from spreading in the community before 2022. Strict travel-related, case-based, and community-based measures were increasingly tightened in Hong Kong over the first two years of the pandemic. However, even very stringent measures were unable to contain the spread of Omicron BA.2 in Hong Kong. Despite high overall vaccination uptake (>70% with at least two doses), high mortality was observed during the Omicron BA.2 wave due to lower vaccine coverage (42%) among adults ≥65 years of age. Increases in antiviral usage and vaccination uptake over time through 2022 was associated with decreased case fatality risks. Interpretation: Integrated strict measures were able to reduce importation risks and interrupt local transmission to contain COVID-19 transmission and disease burden while awaiting vaccine development and rollout. Increasing coverage of pharmaceutical interventions among high-risk groups reduced infection-related mortality and mitigated the adverse health impact of the pandemic. Funding: Health and Medical Research Fund.

20.
Nutrients ; 15(21)2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37960197

ABSTRACT

Various studies have highlighted the important associations between obstructive sleep apnea (OSA) and gut microbiota and related metabolites. Nevertheless, the establishment of causal relationships between these associations remains to be determined. Multiple mendelian randomization (MR) analyses were performed to genetically predict the causative impact of 196 gut microbiota and 83 metabolites on OSA. Two-sample MR was used to assess the potential association, and causality was evaluated using inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods. Multivariable MR (MVMR) was employed to ascertain the causal independence between gut microbiota and the metabolites linked to OSA. Additionally, Cochran's Q test, the MR Egger intercept test and the MR Steiger test were used for the sensitivity analyses. The analysis of the 196 gut microbiota revealed that genus_Ruminococcaceae (UCG009) (PIVW = 0.010) and genus_Subdoligranulum (PIVW = 0.041) were associated with an increased risk of OSA onset. Conversely, Family_Ruminococcaceae (PIVW = 0.030), genus_Coprococcus2 (PWM = 0.025), genus_Eggerthella (PIVW = 0.011), and genus_Eubacterium (xylanophilum_group) (PIVW = 0.001) were negatively related to the risk of OSA. Among the 83 metabolites evaluated, 3-dehydrocarnitine, epiandrosterone sulfate, and leucine were determined to be potential independent risk factors associated with OSA. Moreover, the reverse MR analysis demonstrated a suggestive association between OSA exposure and six microbiota taxa. This study offers compelling evidence regarding the potential beneficial or detrimental causative impact of the gut microbiota and its associated metabolites on OSA risk, thereby providing new insights into the mechanisms of gut microbiome-mediated OSA development.


Subject(s)
Gastrointestinal Microbiome , Lactobacillales , Microbiota , Sleep Apnea, Obstructive , Humans , Gastrointestinal Microbiome/genetics , Mendelian Randomization Analysis , Causality , Clostridiales , Sleep Apnea, Obstructive/genetics , Genome-Wide Association Study
SELECTION OF CITATIONS
SEARCH DETAIL
...