Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 253(Pt 4): 126847, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37709219

ABSTRACT

The synthesis of multifunctional conductive hydrogel has attracted extensive attention worldwide due to their integrated properties of stretchability, self-adhesion, self-healing, and high sensitivity, while it is still a challenge. Although various kinds of polysaccharides and their derivatives are used to achieve the aforementioned objective, there are few researches about hydrogel design introducing sulfated polysaccharide from Enteromorpha prolifera (SPE), which is rich in hydroxyl, sulfate, and carboxyl groups providing amounts of reaction sites for hydrogel synthesis. Herein, conductive hydrogel (PAA-Al3+-SPE3) reinforced by SPE was designed by simple one pot hot polymerization method. This hydrogel demonstrated charming extension ratio (up to 4027.40 %), strain stress (up to 59.94 kPa), compressive strength (19.71 Mpa), and high conductivity sensibility (GF 6.76, 300 % - 700 %). Additionally, PAA-Al3+-SPE3 showed good self-healing property (repaired autonomously after 60 s) and satisfied self-adhesion (31.11 kPa) due to the reversible hydrogen bonds and metal coordination interactions. Furthermore, the PAA-Al3+-SPE3 hydrogel showed great real-time sensing performance to monitor various motions. These findings suggest the potential of PAA-Al3+-SPE3 hydrogel as an affordable and reliable conductive sensing material. Meantime, the first utilization of SPE to construct flexible wearable sensors offers new route for the high-value application of Enteromorpha prolifera.


Subject(s)
Hydrogels , Prunella , Humans , Sulfates , Motion , Electric Conductivity , Polysaccharides
2.
Sensors (Basel) ; 22(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36081074

ABSTRACT

Facing the electricity market environment, in which the traditional power grid is transformed into a smart grid, power retailers with a generator background are designing new business models of cold-heat-electricity multi-energy supply based on the Internet of Things data collection, interconnection, computing and other technical supports. On the other hand, through internet of things real-time monitoring technology, the necessity of setting up energy security for power retailers is explored to enhance the control's ability to deal with the risks of electricity sales. Firstly, based on internet of things data analysis, retail strategies such as cooling-heat-electricity multi-energy packages, desulphurization and carbon emissions and energy conservation are designed. Then, a revenue cost measurement model based on the generator background of the power retailers is established. A source of data for the expansion of power retailers and the proliferation of load users is provided through the real-time monitoring of new business models that consider the operation of energy conservation on the supply and use side. Finally, an analysis based on the detection of operation under the scenarios constructed in the example of coal price market fluctuations and proliferation stagnation of user-side packages is conducted. It is verified that the power retailers with a generator background can effectively weaken the adverse impact of upward fluctuations in the coal price market in the peak season of energy consumption on the cost of power retailers by setting energy conservation. At the same time, the diffusion of a new business model in the user side is improved, and the revenue source of power retailers is further expanded. Therefore, taking energy conservation as an important innovation technique of retail strategy can enhance the market competitiveness and risk control ability of power retailers.


Subject(s)
Internet of Things , Carbon , Coal , Commerce , Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...