Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Fish Biol ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38812441

ABSTRACT

Amomum tsao-ko Crevost et Lemarie (Zingiberaceae), an aromatic plant, has been considered to have diverse medicinal values and economic significance. It has been reported to possess antibacterial, antioxidant, and antidiabetic effects. With the increasing risk of diseases in aquaculture, there is a need for alternative solutions to chemical antibiotics. Plant extracts have shown promise as natural feed additives for aquatic animals. In this study, the antibacterial effect of Amomum tsao-ko crude extracts was evaluated using the Oxford cup method. The extracts exhibited significant antimicrobial activity against Salmonella typhimurium and Salmonella enteritidis. Furthermore, the addition of Amomum tsao-ko to fish feed resulted in notable changes in the gut structure of zebrafish and tilapia. The length and morphology of intestinal villi were enhanced, promoting improved digestion. Analysis of the gut microbial community revealed that Amomum tsao-ko supplementation induced key changes in the gut microbial community composition of both zebrafish and tilapia. Notably, a 1% inclusion of Amomum tsao-ko resulted in a marked rise in Proteobacteria levels in zebrafish, which diminished at 10% dosage. The supplement elicited mixed reactions among other bacterial phyla like Actinobacteria and Verrucomicrobiota. Fluctuations were also observed at the genus level, pointing to the concentration of Amomum tsao-ko playing a pivotal role in influencing the structure of intestinal bacteria. The findings of this study suggest that Amomum tsao-ko has antibacterial properties and can positively influence the gut health of fish. The potential use of Amomum tsao-ko as a natural feed additive holds promise for improving aquaculture practices and reducing reliance on chemical antibiotics. Further research is needed to explore the full potential and applications of Amomum tsao-ko in fish feed development.

2.
Front Biosci (Landmark Ed) ; 21(5): 1076-83, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27100492

ABSTRACT

IQGAP1, as a scaffold protein, integrates diverse cellular functions, including rearrangement of the actin cytoskeleton, cell adhesion, gene transcription and cell cycle regulation. IQGAP1 is elevated in a number of human cancer cells. However little is known about the expression of IQGAP in human pancreatic cancer and its association with cancer proliferation or metastasis. In the present study, we examined the expression of IQGAP1 in different pancreatic cancer cell lines and we found that IQGAP1 level is highly correlated with the degree of malignancy of pancreatic cancer cell metastasis. The proliferation, metastasis, motility and tumorigenesis in SW1990 human pancreatic cells were greatly impaired by down-regulating IQGAP1 expression with RNA interference. Mechanistic analysis indicated that Cdc42/Rac1 pathway might contribute to IQGAP1-mediated-pancreatic cell proliferation and tumorigenesis.


Subject(s)
Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , ras GTPase-Activating Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/physiology , Gene Knockdown Techniques , Humans , Neoplasm Invasiveness/physiopathology , Neoplasm Metastasis/physiopathology , Pancreatic Neoplasms/genetics , RNA, Small Interfering/genetics , rac1 GTP-Binding Protein/metabolism , ras GTPase-Activating Proteins/antagonists & inhibitors , ras GTPase-Activating Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...