Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.255
Filter
1.
Aesthetic Plast Surg ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839614

ABSTRACT

BACKGROUND: Deviation and asymmetry relapse after secondary unilateral cleft rhinoplasty with septal extension graft is a common yet serious problem especially among Asian patients. Therefore, finding an effective approach to reduce deformity relapse remains a great challenge to plastic surgeons. METHODS: In this study, authors established finite element models to simulate different nasal cartilage-corrected options and different reinforcing strategies in secondary unilateral cleft rhinoplasty. A load of 0.01N was given to the nasal tip to simulate the soft tissue pressure, while two loads of 0.5N were separately given to the anterior and posterior part of the septal extension graft to simulate the rhinoplasty condition. Maximum deformations were evaluated to make stability judgments. RESULTS: The maximum deformation of different cartilage correction models in ascending order was: UCL deformity with septum correction, normal nasal cartilage, UCL nasal deformity, and UCL nasal deformity with lower lateral cartilage correction. When applied L-strut reinforcement graft was harvested from the perpendicular plate of the ethmoid bone, the maximum deformation of the models decreased significantly, and strong fixation of the septum could further enhance this decreasing effect. CONCLUSIONS: Correcting the septum and lower lateral cartilage together could improve the structural stability and symmetry in secondary unilateral cleft rhinoplasty. To keep the corrected septum stable and thus reduce deformity relapse, reinforcing the L-strut with perpendicular plate of ethmoid graft while strongly anchoring the septal cartilage to the anterior nasal spine was proved to be effective in both finite element analysis and clinical observation. LEVEL OF EVIDENCE IV: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

2.
Article in English | MEDLINE | ID: mdl-38842658

ABSTRACT

Compiling evidence has indicated that S100A11 expression at high levels is closely associated with various cancer species. Consistent with the results reported elsewhere, we have also revealed that S100A11 is highly expressed in squamous cell carcinoma, mesothelioma, and pancreatic cancers and plays a crucial role in cancer progression when secreted into extracellular fluid. Those studies are all focused on the extracellular role of S100A11. However, most of S100A11 is still present within cancer cells, although the intracellular role of S100A11 in cancer cells has not been fully elucidated. Thus, we aimed to investigate S100A11 functions within cancer cells, primarily focusing on colorectal cancer cells, whose S100A11 is abundantly present in cells and still poorly studied cancer for the protein. Our efforts revealed that overexpression of S100A11 promotes proliferation and migration, and downregulation inversely dampens those cancer behaviors. To clarify how intracellular S100A11 aids cancer cell activation, we tried to identify S100A11 binding proteins, resulting in novel binding partners in the inner membrane, many of which are desmosome proteins. Our molecular approach defined that S100A11 regulates the expression level of DSG1, a component protein of desmosome, by which S100A11 activates the TCF pathway via promoting nuclear translocation of γ-catenin from the desmosome. The identified new pathway greatly helps to comprehend S100A11's nature in colorectal cancers and others.

4.
ACS Infect Dis ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832694

ABSTRACT

Tuberculosis (TB) is a prevalent and severe infectious disease that poses a significant threat to human health. However, it is frequently disregarded as there are not enough quick and accurate ways to diagnose tuberculosis. Here, we develop a strategy for tuberculosis detection to address the challenges, including an experimental strategy, namely, Double Adapter Directional Capture sequencing (DADCSeq), an easily operated and low-cost whole transcriptome sequencing method, and a computational method to identify hub differentially expressed genes as well as the diagnosis of TB based on whole transcriptome data using DADCSeq on peripheral blood mononuclear cells (PBMCs) from active TB and latent TB or healthy control. Applying our approach to create a robust and stable TB multi-mRNA risk probability model (TBMMRP) that can accurately distinguish active and latent TB patients, including active TB and healthy controls in clinical cohorts, this diagnostic biomarker was successfully validated by several independent cross-platform cohorts with favorable performance in differentiating active TB from latent TB or active TB from healthy controls and further demonstrated superior or similar diagnostic accuracy compared to previous diagnostic markers. Overall, we develop a low-cost and effective strategy for tuberculosis diagnosis; as the clinical cohort increases, we can expand to different disease kinds and learn new features through our disease diagnosis strategy.

5.
Adv Mater ; : e2405731, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857110

ABSTRACT

The recycling and utilization of precious metals have emerged as a critical research focus in advancing the development of the circular economy. Among numerous methods for recovering precious metals such as gold, adsorbents with both high adsorption selectivity and capacity have become key technologies. This article incorporated the N-phenylpyrrolidine into a flexible porous polynorbornene backbone to create a class of distinctive porous organic polymers, named BIT-POP-14∼BIT-POP-17. Through a reductive capture mechanism, the reductive adsorption sites of N-phenylpyrrolidine coordinated selectively with precious metals, the reduced metal was captured by the hierarchically porous polymers with flexible backbone. This approach led to remarkable gold recovery efficiency, achieving a record of 2321 mg/g at ambient condition, and 3020 mg/g under UV light, surpassing the theoretical limit. And the porous polymers were filled in a column for a continuous uptake of gold from waste PCBs, showing recovery efficiency towards gold as high as 95% after 84 h. Overall, this work offers a new perspective on designing novel adsorbents for precious metal recovery, providing inspiration for researchers to explore novel adsorption modes and contribute to the advancement of the circular economy. This article is protected by copyright. All rights reserved.

6.
J Transl Med ; 22(1): 549, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849852

ABSTRACT

Cellular communication (CC) influences tumor development by mediating intercellular junctions between cells. However, the role and underlying mechanisms of CC in malignant transformation remain unknown. Here, we investigated the spatiotemporal heterogeneity of CC molecular expression during malignant transformation. It was found that although both tight junctions (TJs) and gap junctions (GJs) were involved in maintaining the tumor microenvironment (TME), they exhibited opposite characteristics. Mechanistically, for epithelial cells (parenchymal component), the expression of TJ molecules consistently decreased during normal-cancer transformation and is a potential oncogenic factor. For fibroblasts (mesenchymal component), the expression of GJs consistently increased during normal-cancer transformation and is a potential oncogenic factor. In addition, the molecular profiles of TJs and GJs were used to stratify colorectal cancer (CRC) patients, where subtypes characterized by high GJ levels and low TJ levels exhibited enhanced mesenchymal signals. Importantly, we propose that leiomodin 1 (LMOD1) is biphasic, with features of both TJs and GJs. LMOD1 not only promotes the activation of cancer-associated fibroblasts (CAFs) but also inhibits the Epithelial-mesenchymal transition (EMT) program in cancer cells. In conclusion, these findings demonstrate the molecular heterogeneity of CC and provide new insights into further understanding of TME heterogeneity.


Subject(s)
Cancer-Associated Fibroblasts , Cell Communication , Colorectal Neoplasms , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , Tumor Microenvironment , Colorectal Neoplasms/pathology , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/genetics , Humans , Epithelial-Mesenchymal Transition/genetics , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Cell Line, Tumor , Tight Junctions/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Gap Junctions/metabolism , Spatio-Temporal Analysis , Animals
7.
Microbiol Res ; 286: 127785, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38851011

ABSTRACT

Carbohydrates play a pivotal role in nutrient recycling and regulation of algal-bacterial interactions. Despite their ecological significance, the intricate molecular mechanisms governing regulation of phycosphere carbohydrates by bacterial taxa linked with natural algal bloom have yet to be fully elucidated. Here, a comprehensive temporal metagenomic analysis was conducted to explore the carbohydrate-active enzyme (CAZyme) genes in two discrete algal bloom microorganisms (Gymnodinium catenatum and Phaeocystis globosa) across three distinct bloom stages: pre-bloom, peak bloom, and post-bloom. Elevated levels of extracellular carbohydrates, primarily rhamnose, galactose, glucose, and arabinose, were observed during the initial and post-peak stages. The prominent CAZyme families identified-glycoside hydrolases (GH) and carbohydrate-binding modules (CBMs)-were present in both algal bloom occurrences. In the G. catenatum bloom, GH23/24 and CBM13/14 were prevalent during the pre-bloom and peak bloom stages, whereas GH2/3/30 and CBM12/24 exhibited increased prevalence during the post-bloom phase. In contrast, the P. globosa bloom had a dominance of GH13/23 and CBM19 in the initial phase, and this was succeeded by GH3/19/24/30 and CBM54 in the later stages. This gene pool variation-observed distinctly in specific genera-highlighted the dynamic structural shifts in functional resources driven by temporal alterations in available substrates. Additionally, ecological linkage analysis underscored a correlation between carbohydrates (or their related genes) and phycospheric bacteria, hinting at a pattern of bottom-up control. These findings contribute to understanding of the dynamic nature of CAZymes, emphasizing the substantial influence of substrate availability on the metabolic capabilities of algal symbiotic bacteria, especially in terms of carbohydrates.

8.
Phytochemistry ; 224: 114145, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759829

ABSTRACT

Eleven previously undescribed abietane-type diterpenoids, named caryopincanoids A-K (1-11), together with five known compounds, were isolated from the EtOH extract of the aerial parts of Caryopteris incana (Thunb.) Miq. Their structures were elucidated on the basis of comprehensive spectroscopic data, NMR calculations, and ECD calculations. The inhibitory activities of all compounds against HIF-2α gene expression in 786-O cells were tested by luciferase assay. Compounds 7, 9, 15, and 16 showed significant inhibitory effects with IC50 values ranging from 12.73 to 23.80 µM. The preliminary structure-activity relationship of these compounds was also discussed.

9.
Aging Dis ; 2024 May 12.
Article in English | MEDLINE | ID: mdl-38739935

ABSTRACT

Iron is an essential micronutrient that is necessary for proper cognitive function. However, the dose-response relationship between body iron status and cognitive function remains unclear. The objective of this study was to investigate the association between serum ferritin concentrations, an indicator of body iron status, and cognitive function in older adults. Based on the National Health and Nutrition Examination Survey (NHANES) 1999 -2002 in the United States, nationally representative data was collected from 2,567 adults aged 60 years and older who had objectively measured serum ferritin levels and cognitive performance. High ferritin levels were defined as a serum ferritin level >200 ng/mL in women and >300 ng/mL in men. Low ferritin levels were defined as a serum ferritin level <30 ng/mL. The digit symbol substitution test (DSST) was employed to assess cognitive function. Multivariable logistic regression analyses with survey weights were performed after the DSST was dichotomized at the median score. The weighted prevalence of adults with normal, low, and high serum ferritin levels were 73.98%, 9.12%, and 16.91%, respectively. A U-shaped association between serum ferritin concentrations and cognitive task performance was observed. After adjusting for demographic, socioeconomic, lifestyle, and C-reactive protein factors, the odds ratio (95% confidence intervals) for lower cognitive performance was 1.39 (1.11, 1.74) in adults with high ferritin levels and 1.38 (0.86, 2.22) in adults with low ferritin levels, compared with those with normal ferritin levels. The association between serum ferritin levels and lower cognitive performance was stronger in adults aged 60 to 69 years old than those aged 70 years and older. In conclusion, in a nationally representative sample of older adults in the United States, a high serum ferritin level was significantly associated with worse cognitive task performance. Thus, the relationship between low serum ferritin concentrations and cognitive task performance warrants further investigation.

10.
Article in English | MEDLINE | ID: mdl-38768417

ABSTRACT

OBJECTIVE: To integrate long-term daily continuous glucose monitoring (CGM) device data with electronic health records (EHR) for type 1 and type 2 diabetes patients in the Veterans Affairs Healthcare System to assess real-world patterns of CGM use and the reliability of EHR-based CGM information. RESEARCH DESIGN AND METHODS: This observational study used Dexcom CGM device data linked with EHR (from 2015-2020) for a large national cohort of diabetes patients. We tracked the initiation and consistency of CGM use, assessed concordance of CGM use and measures of glucose control between CGM device data and EHR records, and examined results by age, ethnicity, and diabetes type. RESULTS: The time from pharmacy release of CGM to patients to initiation of uploading CGM data to Dexcom servers averaged three weeks but demonstrated wide variation among individuals; importantly, this delay decreased markedly over the later years. The average daily wear time of CGM exceeded 22 hours over nearly three years of follow-up. Patterns of CGM use were generally consistent across age, race/ethnicity groups and diabetes type. There was strong concordance between EHR-based estimates of CGM use and Dexcom CGM wear time and between estimates of glucose control from both sources. CONCLUSIONS: The study demonstrates our ability to reliably integrate CGM devices and EHR data to provide valuable insights into CGM use patterns. The results indicate in the real-world environment that CGM is worn consistently over many years for both type 1 and type 2 patients within the Veterans Affairs Healthcare System and is similar across major race/ethnicity and age groups.

11.
J Phys Chem A ; 128(20): 4020-4029, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38743255

ABSTRACT

In this study, we systematically explored the impact of varying the number of thiophene groups on the hydrogen bond interaction and excited-state intramolecular proton-transfer (ESIPT) processes in flavonoid derivatives (STF, DTF, and TTF) using the density functional theory and time-dependent density functional theory methods. Initially, a thorough analysis of the optimized geometric structures revealed that the intramolecular hydrogen bond in the S1 state is enhanced and gradually weakened as the number of thiophene groups increases. To gain a deeper understanding of the hydrogen bond interaction, topological analysis, interaction region indicator scatter plots, and isosurface plots were employed. These images provide further insights that align with the structural analysis. Additionally, we observed a red-shift in the electronic spectra (absorption and fluorescence spectra), which is primarily attributed to the narrowing of the energy gap between the highest occupied molecular orbital and the lowest unoccupied molecular orbital, as elucidated by the frontier molecular orbitals. Furthermore, a combined analysis between the hole-electron distribution and the transition density matrix heat map shows that electron excitation involves the unidirectional charge-transfer mechanism. In the end, by conducting relaxed potential energy curve scans, we found that an increase in the number of thiophene groups elevates the energy barrier for ESIPT, making it more challenging for the reaction. In summary, our study underscores the vital effect of thiophene-substituted numbers in modulating the ESIPT process, which is able to provide valuable insights for the design and synthesis of desired organic fluorescent probes in the future.

12.
Bioresour Technol ; 403: 130862, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38768664

ABSTRACT

Humus is the stable form of carbon storage in straw compost. The phenol-amine reaction is a pathway for humus formation in straw compost. In this study, two reaction systems, GP group (pyrogallol and glycine) and GCP group (catechol, pyrogallol, and glycine), were constructed in a simulated composting environment and revealed the molecular binding mechanism of the phenol-amine reaction through spectroscopy and mass spectrometry. The results showed that phenolic self-polymerization was faster than phenol-amine reaction. Therefore, the aromatization degree of GP was 27.14 % higher than that of GCP. The phenol-amine reaction first produced fulvic acid, and then formed humus units rich in active functional group structures (i.e., phenolic hydroxyl and carboxyl groups). These units further captured small molecule compounds to form humic acid eventually. This study would provide theoretical support for exploring the humus formation process and the promotion of straw humification by adding phenol or amino acids to compost.

13.
Cancer Med ; 13(10): e7203, 2024 May.
Article in English | MEDLINE | ID: mdl-38769930

ABSTRACT

OBJECTIVE: To explore the efficacy of serplulimab plus chemotherapy in esophageal squamous cell carcinoma (ESCC) patients with liver metastases. METHODS: A post hoc exploratory analysis of ASTRUM-007 study was performed, focusing on the association between the liver metastases status and the clinical outcomes. A systematic literature search of electronic databases was conducted to identify eligible randomized controlled trials for the meta-analysis. Study-level pooled analyses of hazard ratios (HRs) for PFS according to liver metastases were performed. RESULTS: The post hoc analysis of ASTRUM-007 showed that although patients with liver metastases had a worse prognosis comparing with the non-liver metastases patients in both treatment arms (serplulimab plus chemotherapy arm: median PFS, 5.7 vs. 6.6 months, HR 1.57 [95% CI, 1.15-2.13]; median OS, 13.7 vs. 15.3 months, HR 1.48 [95% CI, 1.09-1.98]; placebo plus chemotherapy arm: median PFS, 4.3 vs. 5.5 months, HR 1.58 [95% CI, 1.01-2.39]; median OS, 10.3 vs. 11.2 months, HR 1.32 [95% CI, 0.84-2.00]), OS and PFS benefits derived from serplulimab plus chemotherapy versus placebo plus chemotherapy in this study were observed in both patients with liver metastases (HR of PFS: 0.60; 95% CI, 0.37-0.97; HR of OS: 0.68; 95% CI, 0.43-1.11) and the non-liver metastases patients (HR of PFS: 0.62; 95% CI, 0.49-0.80; HR of OS: 0.69; 95% CI, 0.55-0.87) with similar magnitude. Three randomized controlled trials were included in the meta-analysis. Pooled HRs demonstrated that the addition of anti-PD-1 antibodies significantly improved PFS compared to chemotherapy alone regardless of liver metastases status. CONCLUSIONS: This study reveals that the presence of liver metastases is a poor prognostic factor but does not affect the improvements in both PFS and OS brought by adding PD-1 blockade to chemotherapy in ESCC patients. Predictive biomarkers for survival in these patients warrant further investigation.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Liver Neoplasms , Humans , Liver Neoplasms/secondary , Liver Neoplasms/drug therapy , Liver Neoplasms/mortality , Esophageal Squamous Cell Carcinoma/drug therapy , Esophageal Squamous Cell Carcinoma/secondary , Esophageal Squamous Cell Carcinoma/mortality , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Esophageal Neoplasms/drug therapy , Esophageal Neoplasms/pathology , Esophageal Neoplasms/mortality , Male , Immune Checkpoint Inhibitors/therapeutic use , Female , Middle Aged , Randomized Controlled Trials as Topic , Aged , Treatment Outcome , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage
14.
J Environ Manage ; 359: 121076, 2024 May.
Article in English | MEDLINE | ID: mdl-38710148

ABSTRACT

Cellulose-based adsorbents have been extensively developed in heavy metal capture and wastewater treatment. However, most of the reported powder adsorbents suffer from the difficulties in recycling due to their small sizes and limitations in detecting the targets for the lack of sensitive sensor moieties in the structure. Accordingly, carbon dots (CDs) were proposed to be encapsulated in cellulosic hydrogel beads to realize the simultaneous detection and adsorption of Hg (II) in water due to their excellent fluorescence sensing performance. Besides, the molding of cellulose was beneficial to its recycling and further reduced the potential environmental risk generated by secondary pollution caused by adsorbent decomposition. In addition, the detection limit of the hydrogel beads towards Hg (II) reached as low as 8.8 × 10-8 M, which was below the mercury effluent standard declared by WHO, exhibiting excellent practicability in Hg (II) detection and water treatment. The maximum adsorption capacity of CB-50 % for Hg (II) was 290.70 mg/g. Moreover, the adsorbent materials also had preeminent stability that the hydrogel beads could maintain sensitive and selective sensing performance towards Hg (II) after 2 months of storage. Additionally, only 3.3% of the CDs leaked out after 2 weeks of immersion in water, ensuring the accuracy of Hg (II) evaluation. Notably, the adsorbent retained over 80% of its original adsorption capacity after five consecutive regeneration cycles, underscoring its robustness and potential for sustainable environmental applications.


Subject(s)
Carbon , Cellulose , Hydrogels , Mercury , Water Pollutants, Chemical , Mercury/analysis , Cellulose/chemistry , Adsorption , Hydrogels/chemistry , Carbon/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Quantum Dots/chemistry
15.
J Am Chem Soc ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38739092

ABSTRACT

For nearly 60 years, significant research efforts have been focused on developing strategies for the cycloaddition of bicyclobutanes (BCBs). However, higher-order cycloaddition and catalytic asymmetric cycloaddition of BCBs have been long-standing formidable challenges. Here, we report Pd-catalyzed ligand-controlled, tunable cycloadditions for the divergent synthesis of bridged bicyclic frameworks. The dppb ligand facilitates the formal (5+3) cycloaddition of BCBs and vinyl oxiranes, yielding valuable eight-membered ethers with bridged bicyclic scaffolds in 100% regioselectivity. The Cy-DPEphos ligand promotes selective hetero-[2σ+2σ] cycloadditions to access pharmacologically important 2-oxabicyclo[3.1.1]heptane (O-BCHeps). Furthermore, the corresponding catalytic asymmetric synthesis of O-BCHeps with 94-99% ee has been achieved using chiral (S)-DTBM-Segphos, representing the first catalytic asymmetric cross-dimerization of two strained rings. The obtained O-BCHeps are promising bioisosteres for ortho-substituted benzenes.

16.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124321, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38692103

ABSTRACT

In this work, we theoretically explored the influence of atomic electronegativity on excited-state intramolecular proton transfer (ESIPT) behavior among novel fluorescent probes BTDI and its derivatives (BODI and BSeDI). A thorough examination of the optimized structural parameters and infrared vibrational spectra reveals an enhancement in intramolecular hydrogen bonding within BTDI and its derivatives upon light excitation. This finding is further reinforced by topological analysis and interaction region indicator scatter plots, which underscores the sensitivity of atomic electronegativity to variations in hydrogen bonding strength. With regards to absorption and fluorescence spectra, the decrease in atomic electronegativity leads to a pronounced redshift, primarily attributed to the narrowing of the energy gap. Additionally, an analysis of potential energy curves and the exploration of intrinsic reaction coordinate paths based on transition state structures afford a deeper understanding of the mechanism underlying ESIPT and being modulated through the manipulation of atomic electronegativity. We anticipate that this work on atomic electronegativity regulating ESIPT behavior will serve as a catalyst for novel fluorescent probes in the future, offering fresh perspectives and insights.

17.
Cancer Med ; 13(9): e7222, 2024 May.
Article in English | MEDLINE | ID: mdl-38698687

ABSTRACT

BACKGROUND: The prognostic predictive tool for patients with colorectal liver metastasis (CRLM) is limited and the criteria for administering preoperative neoadjuvant chemotherapy in CRLM patients remain controversial. METHODS: This study enrolled 532 CRLM patients at West China Hospital (WCH) from January 2009 to December 2019. Prognostic factors were identified from the training cohort to construct a WCH-nomogram and evaluating accuracy in the validation cohort. Receiver operating characteristic (ROC) curve analysis was used to compare the prediction accuracy with other existing prediction tools. RESULTS: From the analysis of the training cohort, four independent prognostic risk factors, namely tumor marker score, KRAS mutation, primary lymph node metastasis, and tumor burden score were identified on which a WCH-nomogram was constructed. The C-index of the two cohorts were 0.674 (95% CI: 0.634-0.713) and 0.655 (95% CI: 0.586-0.723), respectively, which was better than the previously reported predication scores (CRS, m-CS and GAME score). ROC curves showed AUCs for predicting 1-, 3-, and 5-year overall survival (OS) of 0.758, 0.709, and 0.717 in the training cohort, and 0.860, 0.669, and 0.692 in the validation cohort, respectively. A cutoff value of 114.5 points was obtained for the WCH-nomogram total score based on the maximum Youden index of the ROC curve of 5-year OS. Risk stratification showed significantly better prognosis in the low-risk group, however, the high-risk group was more likely to benefit from neoadjuvant chemotherapy. CONCLUSIONS: The WCH-nomogram demonstrates superior prognostic stratification compared to prior scoring systems, effectively identifying CRLM patients who may benefit the most from neoadjuvant chemotherapy.


Subject(s)
Colorectal Neoplasms , Hepatectomy , Liver Neoplasms , Nomograms , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/mortality , Colorectal Neoplasms/surgery , Liver Neoplasms/secondary , Liver Neoplasms/surgery , Liver Neoplasms/mortality , Liver Neoplasms/drug therapy , Male , Female , Middle Aged , Prognosis , Aged , ROC Curve , Neoadjuvant Therapy , Biomarkers, Tumor , Adult , Proto-Oncogene Proteins p21(ras)/genetics , Risk Factors , Retrospective Studies , China , Lymphatic Metastasis , Mutation , Tumor Burden
18.
Med Image Anal ; 96: 103202, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38788326

ABSTRACT

Inadequate generality across different organs and tasks constrains the application of ultrasound (US) image analysis methods in smart healthcare. Building a universal US foundation model holds the potential to address these issues. Nevertheless, the development of such foundation models encounters intrinsic challenges in US analysis, i.e., insufficient databases, low quality, and ineffective features. In this paper, we present a universal US foundation model, named USFM, generalized to diverse tasks and organs towards label efficient US image analysis. First, a large-scale Multi-organ, Multi-center, and Multi-device US database was built, comprehensively containing over two million US images. Organ-balanced sampling was employed for unbiased learning. Then, USFM is self-supervised pre-trained on the sufficient US database. To extract the effective features from low-quality US images, we proposed a spatial-frequency dual masked image modeling method. A productive spatial noise addition-recovery approach was designed to learn meaningful US information robustly, while a novel frequency band-stop masking learning approach was also employed to extract complex, implicit grayscale distribution and textural variations. Extensive experiments were conducted on the various tasks of segmentation, classification, and image enhancement from diverse organs and diseases. Comparisons with representative US image analysis models illustrate the universality and effectiveness of USFM. The label efficiency experiments suggest the USFM obtains robust performance with only 20% annotation, laying the groundwork for the rapid development of US models in clinical practices.

19.
Int J Biol Macromol ; 271(Pt 1): 132567, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782314

ABSTRACT

Mercury pollution in waters attracts lots of attention due to its serious toxicity and high bioenrichment and many efforts have been devoted in the development of adsorbents for mercury detection and removal. Herein, a cellulose-based adsorbent Cell-TriA-HQ is functionalized with quinoline fluorophore by covalent immobilization through "Click reaction" with high yield. In addition to the admirable adsorptive performance, the prepared adsorbent exhibits excellent selectivity and sensitivity towards Hg (II) in water that the detection limit for Hg (II) is determined to be as low as 1.92 × 10-7 M. The sensitive fluorescence enhancement response is considered to be resulted from the inhibition of photo-induced electron transfer between triazole and quinoline groups and the reinforcement of structural rigidity. The easy manipulation along with excellent performance of adsorption capacity, detective ability and reusability for the multifunctional adsorbent makes it potential in mercury monitoring and removal from aqueous solutions in the field of water treatment.

20.
Med Image Anal ; 95: 103187, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38705056

ABSTRACT

Domain shift problem is commonplace for ultrasound image analysis due to difference imaging setting and diverse medical centers, which lead to poor generalizability of deep learning-based methods. Multi-Source Domain Transformation (MSDT) provides a promising way to tackle the performance degeneration caused by the domain shift, which is more practical and challenging compared to conventional single-source transformation tasks. An effective unsupervised domain combination strategy is highly required to handle multiple domains without annotations. Fidelity and quality of generated images are also important to ensure the accuracy of computer-aided diagnosis. However, existing MSDT approaches underperform in above two areas. In this paper, an efficient domain transformation model named M2O-DiffGAN is introduced to achieve a unified mapping from multiple unlabeled source domains to the target domain. A cycle-consistent "many-to-one" adversarial learning architecture is introduced to model various unlabeled domains jointly. A condition adversarial diffusion process is employed to generate images with high-fidelity, combining an adversarial projector to capture reverse transition probabilities over large step sizes for accelerating sampling. Considering the limited perceptual information of ultrasound images, an ultrasound-specific content loss helps to capture more perceptual features for synthesizing high-quality ultrasound images. Massive comparisons on six clinical datasets covering thyroid, carotid and breast demonstrate the superiority of the M2O-DiffGAN in the performance of bridging the domain gaps and enlarging the generalization of downstream analysis methods compared to state-of-the-art algorithms. It improves the mean MI, Bhattacharyya Coefficient, dice and IoU assessments by 0.390, 0.120, 0.245 and 0.250, presenting promising clinical applications.


Subject(s)
Ultrasonography , Humans , Ultrasonography/methods , Deep Learning , Algorithms , Image Interpretation, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...