Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
1.
Elife ; 122024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635322

ABSTRACT

Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.


Subject(s)
Brain , Macaca , Animals , Humans
2.
IEEE J Biomed Health Inform ; 28(4): 2223-2234, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38285570

ABSTRACT

Preterm birth is the leading cause of death in children under five years old, and is associated with a wide sequence of complications in both short and long term. In view of rapid neurodevelopment during the neonatal period, preterm neonates may exhibit considerable functional alterations compared to term ones. However, the identified functional alterations in previous studies merely achieve moderate classification performance, while more accurate functional characteristics with satisfying discrimination ability for better diagnosis and therapeutic treatment is underexplored. To address this problem, we propose a novel brain structural connectivity (SC) guided Vision Transformer (SCG-ViT) to identify functional connectivity (FC) differences among three neonatal groups: preterm, preterm with early postnatal experience, and term. Particularly, inspired by the neuroscience-derived information, a novel patch token of SC/FC matrix is defined, and the SC matrix is then adopted as an effective mask into the ViT model to screen out input FC patch embeddings with weaker SC, and to focus on stronger ones for better classification and identification of FC differences among the three groups. The experimental results on multi-modal MRI data of 437 neonatal brains from publicly released Developing Human Connectome Project (dHCP) demonstrate that SCG-ViT achieves superior classification ability compared to baseline models, and successfully identifies holistically different FC patterns among the three groups. Moreover, these different FCs are significantly correlated with the differential gene expressions of the three groups. In summary, SCG-ViT provides a powerfully brain-guided pipeline of adopting large-scale and data-intensive deep learning models for medical imaging-based diagnosis.


Subject(s)
Connectome , Premature Birth , Female , Child , Humans , Infant, Newborn , Child, Preschool , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Connectome/methods , Electric Power Supplies
3.
bioRxiv ; 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-37546923

ABSTRACT

Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, we defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. In this study, we identified shared and unique gyral peaks in human and macaque, and investigated the similarities and differences in the spatial distribution, anatomical morphology, and functional connectivity of them.

4.
Cell Rep ; 42(10): 113264, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37838946

ABSTRACT

Aspartyl-tRNA synthetase 2 (Dars2) is involved in the regulation of mitochondrial protein synthesis and tissue-specific mitochondrial unfolded protein response (UPRmt). The role of Dars2 in the self-renewal and differentiation of hematopoietic stem cells (HSCs) is unknown. Here, we show that knockout (KO) of Dars2 significantly impairs the maintenance of hematopoietic stem and progenitor cells (HSPCs) without involving its tRNA synthetase activity. Dars2 KO results in significantly reduced expression of Srsf2/3/6 and impairs multiple events of mRNA alternative splicing (AS). Dars2 directly localizes to Srsf3-labeled spliceosomes in HSPCs and regulates the stability of Srsf3. Dars2-deficient HSPCs exhibit aberrant AS of mTOR and Slc22a17. Dars2 KO greatly suppresses the levels of labile ferrous iron and iron-sulfur cluster-containing proteins, which dampens mitochondrial metabolic activity and DNA damage repair pathways in HSPCs. Our study reveals that Dars2 plays a crucial role in the iron-sulfur metabolism and maintenance of HSPCs by modulating RNA splicing.


Subject(s)
Alternative Splicing , Aspartate-tRNA Ligase , Alternative Splicing/genetics , Aspartate-tRNA Ligase/genetics , Aspartate-tRNA Ligase/metabolism , Iron/metabolism , Hematopoietic Stem Cells/metabolism , Mitochondria/metabolism
5.
ACS Omega ; 8(17): 15553-15563, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37151548

ABSTRACT

Given the high injection pressure and insufficient injection volume in the offshore oilfield, Bohai Oilfield has developed a bio-nano-depressurization and injection-increasing composite system solution (bio-nano-injection-increasing solution) composed of bio-surfactants, hydrophobic nano-polysilicon particles, and dispersant additives. In response to the current problems, a new type of bio-nano-depressurization and injection enhancement technology has been studied, which has multiple functions such as nano-scale inhibition and wetting reversal. The new technology has the technical advantages of efficient decompression, long-term injection, and wide adaptation. However, there is still a lack of optimization schemes and application effect prediction methods, which hinder the further popularization and application of the bio-nano-composite system solution. To solve this problem, this paper takes Well A1 in the Bohai Sea as an example to optimize the injection volume, concentration, and speed of the bio-nano-augmentation fluid and evaluates the application effect by using the proposed well testing, water absorption index, and numerical simulation methods. The research results show that the bio-nano-injection fluid can effectively improve the reservoir permeability and reduce the injection pressure. The application effect evaluation method proposed is reliable and can provide some reference for similar depressurization and injection-increasing technologies.

6.
Neural Netw ; 158: 99-110, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36446159

ABSTRACT

Characterizing individualized spatio-temporal patterns of functional brain networks (FBNs) via functional magnetic resonance imaging (fMRI) provides a foundation for understanding complex brain function. Although previous studies have achieved promising performances based on either shallow or deep learning models, there is still much space to improve the accuracy of spatio-temporal pattern characterization of FBNs by optimally integrating the four-dimensional (4D) features of fMRI. In this study, we introduce a novel Spatio-Temporal Attention 4D Convolutional Neural Network (STA-4DCNN) model to characterize individualized spatio-temporal patterns of FBNs. Particularly, STA-4DCNN is composed of two subnetworks, in which the first Spatial Attention 4D CNN (SA-4DCNN) models the spatio-temporal features of 4D fMRI data and then characterizes the spatial pattern of FBNs, and the second Temporal Guided Attention Network (T-GANet) further characterizes the temporal pattern of FBNs under the guidance of the spatial pattern together with 4D fMRI data. We evaluate the proposed STA-4DCNN on seven different task fMRI and one resting state fMRI datasets from the publicly released Human Connectome Project. The experimental results demonstrate that STA-4DCNN has superior ability and generalizability in characterizing individualized spatio-temporal patterns of FBNs when compared to other state-of-the-art models. We further apply STA-4DCNN on another independent ABIDE I resting state fMRI dataset including both autism spectrum disorder (ASD) and typical developing (TD) subjects, and successfully identify abnormal spatio-temporal patterns of FBNs in ASD compared to TD. In general, STA-4DCNN provides a powerful tool for FBN characterization and for clinical applications on brain disease characterization at the individual level.


Subject(s)
Autism Spectrum Disorder , Connectome , Humans , Autism Spectrum Disorder/diagnostic imaging , Brain/diagnostic imaging , Connectome/methods , Neural Networks, Computer , Magnetic Resonance Imaging/methods
8.
Transl Res ; 255: 1-13, 2023 05.
Article in English | MEDLINE | ID: mdl-36384204

ABSTRACT

Cell inflammation and death are closely linked processes contributing to endothelial dysfunction, which plays a critical role in atherogenesis. Activation of the NLRP3 inflammasome causes pyroptosis, the Gasdermin D (GSDMD)-mediated inflammatory cell death. The non-canonical NF-κB pathway has been implicated in inflammation; however, its role in NLRP3 inflammasome-mediated endothelial dysfunction has not been investigated. This study investigated a role for the non-canonical NF-κB pathway in regulating endothelial pyroptosis as it relates to atherogenesis. Immunohistochemistry indicated inflammasome activation in the endothelial cells (EC) of human atherosclerotic arteries. Flow cytometry and Western blot analysis revealed that oxidized low-density lipoprotein (oxLDL) activated the NLRP3 inflammasome, concomitant with the activation of non-canonical NF-κB in primary human aortic EC. Interference of NF-κB inducing kinase (NIK), the key regulator of the non-canonical pathway, significantly attenuated oxLDL- or LPS/ATP-induced NLRP3 inflammasome activation, pyroptosis, IL-1ß, and IL-18 secretion. In contrast, overexpression of NIK exacerbated these responses. Chromatin immunoprecipitation revealed that activation of the non-canonical NF-κB pathway upregulated the transcription factor IRF-1 through RelB/p52 binding to its promoter region at -782/-770. In addition to the known target CASP1, RNA sequencing further identified GSDMD as a target gene of IRF-1. IRF-1 but not RelB/p52 interacted with the GSDMD promoter at -526/-515 and the CASP1 promoter at -11/10 to promote the expression and CASP1-mediated activation of GSDMD. Consistent with the observations in cultured endothelium, endothelial-specific deficiency of NIK or IRF-1 attenuated atherosclerosis in high-fat diet-fed Apoe-null mice. These data demonstrate that the non-canonical NF-κB pathway contributes to NLRP3 inflammasome-mediated endothelial pyroptosis and the development of atherosclerosis through GSDMD activation in a manner dependent on IRF-1. Further investigation may facilitate the identification of specific therapeutic targets for atherosclerotic heart diseases.


Subject(s)
Atherosclerosis , NF-kappa B , Mice , Animals , Humans , NF-kappa B/metabolism , Inflammasomes/metabolism , Pyroptosis/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Endothelial Cells/metabolism , Endothelium/metabolism , Inflammation
9.
ACS Omega ; 7(44): 40132-40144, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36385842

ABSTRACT

At present, the water displacement recovery in some medium- and low-permeability reservoirs that cannot be injected and produced in offshore oil fields because of small pores and complex structures is less than 18%. This amount is far lower than 25-40%, which is obtained after water displacement and chemical displacement in medium- and high-permeability reservoirs. Given the current situation of water injection in offshore medium- and low-permeability reservoirs, a new green and environmentally friendly nano-oil displacement technology must be urgently developed to improve the sweep coefficient and oil displacement efficiency of injected water. In this study, the experimental laboratory investigation of a biological nano-oil displacement system suitable for medium- and low-permeability reservoirs is performed. The oil displacement effects, such as changing interfacial tension, viscosity reduction, and oil flushing ability, are also evaluated. The partial differential mathematical model of multicomponent isothermal multiphase seepage is deduced, the mechanism of biological nano-oil displacement technology is finely characterized, and a set of numerical simulation optimization charts of the biological nano-oil displacement process parameters is established. Results show that the biological nano-oil displacement system has adsorption characteristics in porous media, effective miscibility with crude oil, and a minimum contact angle reaching 14.3°. Its interfacial tension can be reduced to the 10-3 level, the viscosity reduction efficiency can reach more than 90%, and the oil washing efficiency can reach more than 70%. Compared with the conventional water and chemical displacement systems, the displacement system in this study has a good oil rock flushing effect and improves oil recovery by 15%. When the injection-production ratio is comprehensively considered, the recommended injection cycle is 6000 ppm. The field test of the biological nano-oil displacement system has been completed, with a validity period of 1 year and a cumulative oil increase of 1.2 × 104 m3, which is still effective. This study provides environmentally friendly solutions for the new chemical displacement of offshore medium- and low-permeability reservoirs. The established process parameter optimization chart has important guiding relevance for the optimization of technical schemes and improvement of the oil increase effect in chemical displacement.

10.
J Clin Transl Hepatol ; 10(4): 669-679, 2022 Aug 28.
Article in English | MEDLINE | ID: mdl-36062289

ABSTRACT

Background and Aims: Transplantation of mesenchymal stem cells (MSCs) derived from bone marrow (BM) is an alternative treatment of acute liver failure (ALF) mainly because of the resulting anti-inflammatory activity. It is not known how MSCs regulate local immune responses and liver regeneration. This study explored the effects of MSCs on hepatic macrophages and the Wnt signaling pathway in ALF. Methods: MSCs were isolated from BM aspirates of C57BL/6J mice, and transplanted in mice with ALF induced by D-galactosamine (D-Gal). The proliferation of hepatocytes was assayed by immunohistochemical (IHC) staining of Ki-67 and proliferating cell nuclear antigen (PCNA). The levels of key proteins in the Wnt signaling pathway were assayed by western blotting and cytokines were determined enzyme-linked immunosorbent assays (ELISAs). A macrophage polarization assay characterized the M1/M2 ratio. The potential role of interleukin-4 (IL-4) in the biological activity of MSCs was determined by silencing of IL-4. Results: Transplantation of allogeneic MSCs significantly attenuated D-Gal-induced hepatic inflammation and promoted liver regeneration. MSC transplantation significantly promoted a phenotypic switch from proinflamatory M1 macrophages to anti-inflammatory M2 macrophages, leading to significant Wnt-3a induction and activation of the Wnt signaling pathway in mice with D-Gal-induced ALF. Of the paracrine factors secreted by MSCs (G-CSF, IL-6, IL-1 beta, IL-4, and IL-17A), IL-4 was specifically induced following transplantation in the ALF model mice. The silencing of IL-4 significantly abrogated the phenotypic switch to M2 macrophages and the protective effects of MSCs in both the ALF model mice and a co-culture model in an IL-4 dependent manner. Conclusions: In vivo and in vitro studies showed that MSCs ameliorated ALF through an IL-4-dependent macrophage switch toward the M2 anti-inflammatory phenotype. The findings may have clinical implications in that overexpression of IL-4 may enhance the therapeutic effects of allogeneic MSC transplantation in the treatment of ALF.

11.
J. physiol. biochem ; 78(1): 9–17, feb. 2022. ilus
Article in English | IBECS | ID: ibc-215869

ABSTRACT

As a highly evolutionarily conserved process, autophagy can be found in all types of eukaryotic cells. Such a constitutive process maintains cellular homeostasis in a wide variety of cell types through the encapsulation of damaged proteins or organelles into double-membrane vesicles. Autophagy not only simply eliminates materials but also serves as a dynamic recycling system that produces new building blocks and energy for cellular renovation and homeostasis. Previous studies have primarily recognized the role of autophagy in the degradation of dysfunctional proteins and unwanted organelles. However, there are findings of autophagy in physiological and pathological processes. In hepatocytes, autophagy is not only essential for homeostatic functions but also implicated in some diseases, such as viral hepatitis, alcoholic hepatitis, and hepatic failure. In the present review, we summarized the molecular mechanisms of autophagy and its role in several liver diseases and put forward several new strategies for the treatment of liver disease. (AU)


Subject(s)
Humans , Autophagy/physiology , Liver Diseases/etiology , Hepatocytes , Homeostasis
12.
J Physiol Biochem ; 78(1): 9-17, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34657993

ABSTRACT

As a highly evolutionarily conserved process, autophagy can be found in all types of eukaryotic cells. Such a constitutive process maintains cellular homeostasis in a wide variety of cell types through the encapsulation of damaged proteins or organelles into double-membrane vesicles. Autophagy not only simply eliminates materials but also serves as a dynamic recycling system that produces new building blocks and energy for cellular renovation and homeostasis. Previous studies have primarily recognized the role of autophagy in the degradation of dysfunctional proteins and unwanted organelles. However, there are findings of autophagy in physiological and pathological processes. In hepatocytes, autophagy is not only essential for homeostatic functions but also implicated in some diseases, such as viral hepatitis, alcoholic hepatitis, and hepatic failure. In the present review, we summarized the molecular mechanisms of autophagy and its role in several liver diseases and put forward several new strategies for the treatment of liver disease.


Subject(s)
Autophagy , Liver Diseases , Autophagy/physiology , Hepatocytes , Homeostasis , Humans , Liver Diseases/etiology
13.
Oxid Med Cell Longev ; 2021: 6662156, 2021.
Article in English | MEDLINE | ID: mdl-33986918

ABSTRACT

Ischemia-reperfusion injury (IRI) is a common complication in liver surgeries. It is a focus to discover effective treatments to reduce ischemia-reperfusion injury. Previous studies show that oxidative stress and inflammation response contribute to the liver damage during IRI. SS-31 is an innovated mitochondrial-targeted antioxidant peptide shown to scavenge reactive oxygen species and decrease oxidative stress, but the protective effects of SS-31 against hepatic IRI are not well understood. The aim of our study is to investigate whether SS-31 could protect the liver from damages induced by IRI and understand the protective mechanism. The results showed that SS-31 treatment can significantly attenuate liver injury during IRI, proved by HE staining, serum ALT/AST, and TUNEL staining which can assess the degree of liver damage. Meanwhile, we find that oxidative stress and inflammation were significantly suppressed after SS-31 administration. Furthermore, the mechanism revealed that SS-31 can directly decrease ROS production and regulate STAT1/STAT3 signaling in macrophages, thus inhibiting macrophage M1 polarization. The proinflammation cytokines are then significantly reduced, which suppress inflammation response in the liver. Taken together, our study discovered that SS-31 can regulate macrophage polarization through ROS scavenging and STAT1/STAT3 signaling to ameliorate liver injury; the protective effects against hepatic IRI suggest that SS-31 may be an appropriate treatment for liver IRI in the clinic.


Subject(s)
Liver/pathology , Macrophages/metabolism , Oligopeptides/metabolism , Oxidative Stress/drug effects , Humans , Reperfusion Injury
14.
Front Oncol ; 11: 599124, 2021.
Article in English | MEDLINE | ID: mdl-33747917

ABSTRACT

Autophagy is a conserved catabolic process maintaining cellular homeostasis and reportedly plays a critical role in tumor progression. Accumulating data show that autophagic activity is inhibited in hepatocellular carcinoma. However, the underlying molecular basis of impaired autophagy in HCC remains unclear. In this study, we revealed that autophagic activity was suppressed by HMGB1 in a HIPK2-dependent way. Targeting HMGB1 could inhibit the degradation of HIPK2, as a result of which, autophagic degradation of ZEB1 was enhanced by reprogramming glucose metabolism/AMPK/mTOR axis. Moreover, we demonstrated that selectively degradation of ZEB1 was responsible for HCC growth inhibition in HMGB1 deficient cells. Lastly, we found the combination therapy of HMGB1 inhibitor and rapamycin achieved a better anti-HCC effect. These results demonstrate that impaired autophagy is controlled by HMGB1 and targeting HMGB1 could suppress HCC progression via HIPK2-mediated autophagic degradation of ZEB1.

15.
Am J Cancer Res ; 11(2): 479-494, 2021.
Article in English | MEDLINE | ID: mdl-33575082

ABSTRACT

HBV infection plays a crucial role in primary liver cancer development. Also, HBV related liver cancer has higher invasiveness and earlier discovered distant metastasis. HBV-encoded X protein (HBx) exerts various biological functions on liver cancer progression, including proliferation, invasion, and venous metastasis. There is evidence that High-mobility group box 1 (HMGB1) promotes epithelial-mesenchymal transition (EMT) and angiogenesis of tumors, including liver cancer. Therefore, this study investigates whether HMGB1 mediates HBx-induced EMT and angiogenesis in HBV related liver cancer. We collected 76 tumor samples of primary liver cancer patients to analyze the relationship between HMGB1 and portal vein tumor thrombus (PVTT) in HBV related liver cancer. To test the influence of HMGB1 on EMT and angiogenesis, we constructed HBx lentivirus transfected HepG2/Huh7 cell lines and performed invasion assays, tube formation and in vivo metastatic experiments. We evaluated HMGB1 and STAT3/miR-34a/NF-κB pathway in vivo and in vitro by immunoblot, quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence and immunohistochemistry analysis. Subsequent RNA interference (RNAi) and luciferase reporter assay were conducted to detect the functional correlation between HMGB1 and STAT3/miR-34a/NF-κB pathway. Our results showed enhanced expression of HMGB1 in HBV related liver cancer, especially with PVTT, while HMGB1 expression was associated with tumor invasion and metastasis. Further experiments indicated that the activation of STAT3 mediated HBx-induced HMGB1, which is involved in EMT and tumor angiogenesis. Besides, HMGB1 expression stimulated by HBx was dependent on the activation of the NF-κB signaling pathway, which was inhibited by miR-34a, while STAT3 suppressed the expression of miR-34a. Moreover, extracellular HMGB1 induced the IL-6/STAT3/miR-34a axis activation, which indicated a reciprocal relationship between HMGB1 and miR-34a. Collectively, our study provided evidence to reveal that HBx-mediated high expression of HMGB1 accounted for EMT and tumor angiogenesis in HBV related liver cancer, and HMGB1 may be a potential target for predicting venous metastasis.

16.
Front Immunol ; 12: 781087, 2021.
Article in English | MEDLINE | ID: mdl-35069553

ABSTRACT

Background: As a crucial constituent part of Polycomb repressive complex 2, PHD finger protein 19 (PHF19) plays a pivotal role in epigenetic regulation, and acts as a critical regulator of multiple pathophysiological processes. However, the exact roles of PHF19 in cancers remain enigmatic. The present research was primarily designed to provide the prognostic landscape visualizations of PHF19 in cancers, and study the correlations between PHF19 expression and immune infiltration characteristics in tumor microenvironment. Methods: Raw data in regard to PHF19 expression were extracted from TCGA and GEO data portals. We examined the expression patterns, prognostic values, mutation landscapes, and protein-protein interaction network of PHF19 in pan-cancer utilizing multiple databases, and investigated the relationship of PHF19 expression with immune infiltrates across TCGA-sequenced cancers. The R language was used to conduct KEGG and GO enrichment analyses. Besides, we built a risk-score model of hepatocellular carcinoma (HCC) and validated its prognostic classification efficiency. Results: On balance, PHF19 expression was significantly higher in cancers in comparison with that in noncancerous samples. Increased expression of PHF19 was detrimental to the clinical prognoses of cancer patients, especially HCC. There were significant correlations between PHF19 expression and TMB or MSI in several cancers. High PHF19 levels were critically associated with the infiltration of myeloid-derived suppressor cells (MDSCs) and Th2 subsets of CD4+ T cells in most cancers. Enrichment analyses revealed that PHF19 participated in regulating carcinogenic processes including cell cycle and DNA replication, and was correlated with the progression of HCC. Intriguingly, GSEA suggested that PHF19 was correlated with the cellular components including immunoglobulin complex and T cell receptor complex in HCC. Based on PHF19-associated functional gene sets, an eleven-gene prognostic signature was constructed to predict HCC prognosis. Finally, we validated pan-cancer PHF19 expression, and its impacts on immune infiltrates in HCC. Conclusion: The epigenetic related regulator PHF19 participates in the carcinogenic progression of multiple cancers, and may contribute to the immune infiltration in tumor microenvironment. Our study suggests that PHF19 can serve as a carcinogenic indicator related to prognosis in pan-cancer, especially HCC, and shed new light on therapeutics of cancers for clinicians.


Subject(s)
Biomarkers, Tumor/immunology , CD4-Positive T-Lymphocytes/immunology , Carcinoma, Hepatocellular , DNA-Binding Proteins/immunology , Gene Expression Regulation, Neoplastic/immunology , Liver Neoplasms , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasm Proteins/immunology , Transcription Factors/immunology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/mortality , Databases, Genetic , Disease-Free Survival , Female , Humans , Liver Neoplasms/immunology , Liver Neoplasms/mortality , Male , Middle Aged , Survival Rate , Tumor Microenvironment
17.
J Nanobiotechnology ; 17(1): 29, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30782171

ABSTRACT

BACKGROUND: Accumulating evidence shows that microRNA-210 (miR-210) holds great promise to improve angiogenesis for brain tissue repair after cerebral ischemia. However, safe and efficient delivery of miR-210 via intravenous administration is still a challenge. In the past decade, exosomes have emerged as a novel endogenous delivery system. Here, c(RGDyK) peptide is conjugated to exosomes, and they are loaded with cholesterol-modified miR-210 (RGD-exo:miR-210). RESULTS: In a transient middle cerebral artery occlusion (MCAO) mouse model, the RGD-exo:miR-210 targets the lesion region of the ischemic brain after intravenous administration, resulting in an increase in miR-210 at the site. Furthermore, RGD-exo:miR-210 are administered once every other day for 14 days, and the expressions of integrin ß3, vascular endothelial growth factor (VEGF) and CD34 are significantly upregulated. The animal survival rate is also enhanced. CONCLUSIONS: These results suggest a strategy for the targeted delivery of miR-210 to ischemic brain and provide an angiogenic agent for the treatment of ischemic stroke.


Subject(s)
Exosomes , Infarction, Middle Cerebral Artery/drug therapy , MicroRNAs/administration & dosage , Animals , Drug Carriers , Genetic Therapy/methods , Mice , MicroRNAs/chemistry
18.
Proc Natl Acad Sci U S A ; 115(21): 5332-5337, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29735697

ABSTRACT

Germanium telluride (GeTe)-based materials, which display intriguing functionalities, have been intensively studied from both fundamental and technological perspectives. As a thermoelectric material, though, the phase transition in GeTe from a rhombohedral structure to a cubic structure at ∼700 K is a major obstacle impeding applications for energy harvesting. In this work, we discovered that the phase-transition temperature can be suppressed to below 300 K by a simple Bi and Mn codoping, resulting in the high performance of cubic GeTe from 300 to 773 K. Bi doping on the Ge site was found to reduce the hole concentration and thus to enhance the thermoelectric properties. Mn alloying on the Ge site simultaneously increased the hole effective mass and the Seebeck coefficient through modification of the valence bands. With the Bi and Mn codoping, the lattice thermal conductivity was also largely reduced due to the strong point-defect scattering for phonons, resulting in a peak thermoelectric figure of merit (ZT) of ∼1.5 at 773 K and an average ZT of ∼1.1 from 300 to 773 K in cubic Ge0.81Mn0.15Bi0.04Te. Our results open the door for further studies of this exciting material for thermoelectric and other applications.

19.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 29(7): 662-665, 2017 Jul.
Article in Chinese | MEDLINE | ID: mdl-28743349

ABSTRACT

OBJECTIVE: Sepsis should be defined as life-threatening organ dysfunction caused by a dys-regulated host response to infection. Continuous renal replacement therapy (CRRT) is one of the methods for the clinical treatment of sepsis. For patients undergoing CRRT, rational antimicrobial therapy is very important for the control of patient's infection. However, during CRRT, there is no clear guideline for the dose adjustment of antibiotics. In this paper, we analyzed the effect of CRRT combined with antibiotics on sepsis treatment in China and abroad, and discussed its effect on antibiotic clearance, and provided reference for clinical work.


Subject(s)
Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/therapeutic use , Renal Replacement Therapy/methods , Sepsis/drug therapy , China , Combined Modality Therapy , Humans , Metabolic Clearance Rate , Treatment Outcome
20.
Water Sci Technol ; 70(7): 1292-7, 2014.
Article in English | MEDLINE | ID: mdl-25325556

ABSTRACT

Heavy metal pollution is a serious environmental concern worldwide, resulting in both environmental and human harm. Recently, studies have shown that environmental biotechnologies based on sulfate reduction offer a potential for removal of toxic heavy metals. Biological iron sulfide composites are iron sulfide compounds generated in situ by sulfate-reducing bacteria. In this study, microscopic morphological changes during the composites' generation process were studied, and the effect of biological iron sulfide composites in different generation phases on treatment of heavy metal wastewater was investigated to establish the correlation between macro-effect and micro-properties. The results revealed that the generation process of biological iron sulfide composites occurs in three phases: the formation phase, stationary phase, and agglomeration phase. The stationary phase can be divided into a pre-stationary phase and post-stationary phase. It was found that the best treatment time for Cr(6+) is in the pre-stationary phase, while the best treatment time for Cu(2+)and Cd(2+) is in the post-stationary phase. The results of this study further prove the benefits of treatment of heavy metal wastewater using biological sulfide composites and provide theoretical guidance in practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...