Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 84
Filter
1.
Cell Signal ; 119: 111185, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38643947

ABSTRACT

Colorectal cancer, the third most prevalent malignant cancer, is associated with poor prognosis. Recent studies have investigated the mechanisms underlying cuproptosis and disulfidptosis in colorectal cancer. However, whether genes linked to these processes impact the prognosis of colorectal cancer patients through analogous mechanisms remains unclear. In this study, we developed a model of cuproptosis and disulfidptosis in colorectal cancer and concurrently explored the role of the pivotal model gene HSPA8 in colorectal cancer cell lines. Our results revealed a positive correlation between cuproptosis and disulfidptosis, both of which are emerging as protective factors for the prognosis of CRC patients. Consequently, a prognostic model encompassing HSPA8, PDCL3, CBX3, ATP6V1G1, TAF1D, RPL4, and RPL14 was constructed. Notably, the key gene in our model, HSPA8, exhibited heightened expression and was validated as a protective prognostic factor in colorectal cancer, exerting inhibitory effects on colorectal cancer cell proliferation. This study offers novel insights into the interplay between cuproptosis and disulfidptosis. The application of the prognostic model holds promise for more effectively predicting the overall survival of colorectal cancer patients.


Subject(s)
Colorectal Neoplasms , HSC70 Heat-Shock Proteins , Humans , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , HSC70 Heat-Shock Proteins/metabolism , HSC70 Heat-Shock Proteins/genetics , Cell Line, Tumor , Prognosis , Cell Proliferation , Gene Expression Regulation, Neoplastic , Apoptosis/genetics
3.
Clin Epigenetics ; 14(1): 162, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36461046

ABSTRACT

BACKGROUND: We screened out several hypermethylated solute carrier (SLC) family genes in acute myeloid leukemia by reduced representation bisulfite sequencing. SLC22A3 encodes an organic cation transport protein, which is critical for drug transportation and cellular detoxification. SLC22A3 is significantly downregulated and associated with tumor progression and worse prognosis in a variety of solid tumors. However, there are no data available regarding the role of SLC22 in AML. This study aimed to explore the regulatory mechanism of DNA methylation on SLC22A3 expression, as well as its clinical significance in AML prognosis. RESULTS: SLC22A3 was identified as the sole prognosis-associated gene among SLCs based on TCGA and Beat AML databases. Bone marrow mononuclear cells (BMMNCs) from AML, MDS patients, and healthy donors were enrolled in this study. SLC22A3 methylation was significantly increased in AML compared with controls and MDS patients; meanwhile, the expression level of SLC22A3 was decreased. SLC22A3 hypermethylation presented an obvious association with some specific clinical characteristics and affected the survival time of AML patients as an independent risk indicator. SLC22A3 expression changed regularly as the disease complete remissions and relapses. Demethylation drug 5-aza-2'-deoxycytidine (DAC) activated transcription and increased mRNA expression of SLC22A3 in leukemia cell lines and AML fresh BMMNCs. Knockdown of SLC22A3 in leukemia cells enhanced cell proliferation and suppressed cell apoptosis. Data from public programs were used for auxiliary screening of probable molecular mechanisms of SLC22A3 in the antileukemia effect. CONCLUSIONS: Our results showed that increased methylation and decreased expression of SLC22A3 may be indicators of poor prognosis in AML. Methylation-silenced SLC22A3 expression may have potential guiding significance on antileukemia effect of DAC.


Subject(s)
DNA Methylation , Leukemia, Myeloid, Acute , Humans , Prognosis , Gene Silencing , Leukemia, Myeloid, Acute/genetics , Protein Processing, Post-Translational
4.
Eur J Med Res ; 27(1): 259, 2022 Nov 21.
Article in English | MEDLINE | ID: mdl-36411451

ABSTRACT

BACKGROUND: Aberrant DNA methylation plays a crucial role in the progression of myeloid neoplasms. Previously, our literature reported that slit guidance ligand 2 (SLIT2) promoter methylation was associated with disease progression and indicated a poor prognosis in patients with myelodysplastic syndrome. Herein, we further investigated the clinical implications and role of SLIT2 promoter methylation in patients with chronic myeloid leukemia (CML). METHODS: The level of SLIT2 promoter methylation was determined in 104 CML patients, and its clinical significance was analyzed. Moreover, demethylation studies were performed in K562 cells to determine the epigenetic mechanism by which SLIT2 promoter methylation is regulated in CML. RESULTS: The level of SLIT2 promoter methylation was similar between CML patients and controls. However, deeper analysis revealed that the SLIT2 promoter methylation level in the accelerated phase (AP) and blast crisis (BC) was markedly higher than that in the chronic phase (CP) and controls. Additionally, a marked difference was identified between the SLIT2 promoter hypermethylated and non-hypermethylated groups among CML patients grouped by clinical stage. The frequency of SLIT2 hypermethylation was markedly increased with the progression of clinical stage, that is, it was the lowest in CP samples (12/80, 15%), higher in AP samples (4/8, 50%) and the highest in BC samples (11/16, 69%). Importantly, the level/density of SLIT2 promoter methylation was significantly higher in the advanced stage than in the early stage among the 6 tested paired CML patients. Epigenetically, the expression of the SLIT2-embedded non-coding genes SLIT2-IT1 and miR-218 expression was decreased in patients with CML. SLIT2 promoter hypermethylated cases had a markedly lower SLIT2-IT1 expression level than SLIT2 promoter non-hypermethylated cases. Moreover, SLIT2-IT1 and miR-218 expression was remarkably upregulated in a dose-dependent manner after demethylation treatment of K562 cells. CONCLUSIONS: Hypermethylation of the SLIT2 promoter is correlated with disease progression in CML. Furthermore, SLIT2 promoter methylation may function by regulating the expression of the SLIT2-embedded non-coding genes SLIT2-IT1 and miR-218 during CML progression.


Subject(s)
Intercellular Signaling Peptides and Proteins , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , MicroRNAs , Nerve Tissue Proteins , Humans , Disease Progression , DNA Methylation/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Promoter Regions, Genetic/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Nerve Tissue Proteins/metabolism
5.
BMC Cancer ; 22(1): 1229, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36443709

ABSTRACT

BACKGROUND: Dysregulation of inhibitor of differentiation/DNA binding (ID) genes is linked to cancer growth, angiogenesis, invasiveness, metastasis and patient survival. Nevertheless, few investigations have systematically determined the expression and prognostic value of ID genes in acute myeloid leukemia (AML). METHODS: The expression and clinical prognostic value of ID genes in AML were first identified by public databases and further validated by our research cohort. RESULTS: Using public data, the expression of ID1/ID3 was markedly downregulated in AML, and the expression of ID2 was greatly upregulated in AML, whereas ID4 showed no significant difference. Among the ID genes, only ID3 expression may be the most valuable prognostic biomarker in both total AML and cytogenetically normal AML (CN-AML) and especially in CN-AML. Clinically, reduced ID3 expression was greatly associated with higher white blood cell counts, peripheral blood/bone marrow blasts, normal karyotypes and intermediate cytogenetic risk. In addition, low ID3 expression was markedly related to FLT3 and NPM1 mutations as well as wild-type TP53. Despite these associations, multivariate Cox regression analysis revealed that ID3 expression was an independent risk factor affecting overall survival (OS) and disease free survival (DFS) in CN-AML patients. Biologically, a total of 839 mRNAs/lncRNAs and 72 microRNAs were found to be associated with ID3 expression in AML. Importantly, the expression of ID3 with discriminative value in AML was further confirmed in our research cohort. CONCLUSION: The bioinformatics analysis and experimental verification demonstrate that low ID3 expression independently affects OS and DFS in patients with CN-AML, which might be seen as a potential prognostic indicator in CN-AML.


Subject(s)
Computational Biology , Leukemia, Myeloid, Acute , Humans , Prognosis , Leukemia, Myeloid, Acute/genetics , Disease-Free Survival , Progression-Free Survival , Neoplasm Proteins , Inhibitor of Differentiation Proteins/genetics
6.
Cancers (Basel) ; 14(18)2022 Sep 10.
Article in English | MEDLINE | ID: mdl-36139566

ABSTRACT

Mutations of spliceosome genes have been frequently identified in myeloid malignancies with the large-scale application of advanced sequencing technology. U2 small nuclear RNA auxiliary factor 1 (U2AF1), an essential component of U2AF heterodimer, plays a pivotal role in the pre-mRNA splicing processes to generate functional mRNAs. Over the past few decades, the mutation landscape of U2AF1 (most frequently involved S34 and Q157 hotspots) has been drawn in multiple cancers, particularly in myeloid malignancies. As a recognized early driver of myelodysplastic syndromes (MDSs), U2AF1 mutates most frequently in MDS, followed by acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs). Here, for the first time, we summarize the research progress of U2AF1 mutations in myeloid malignancies, including the correlations between U2AF1 mutations with clinical and genetic characteristics, prognosis, and the leukemic transformation of patients. We also summarize the adverse effects of U2AF1 mutations on hematopoietic function, and the alterations in downstream alternative gene splicing and biological pathways, thus providing comprehensive insights into the roles of U2AF1 mutations in the myeloid malignancy pathogenesis. U2AF1 mutations are expected to be potential novel molecular markers for myeloid malignancies, especially for risk stratification, prognosis assessment, and a therapeutic target of MDS patients.

7.
Cell Mol Biol Lett ; 27(1): 59, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35883028

ABSTRACT

BACKGROUND: Previously, we reported the expression of DLX4 isoforms (BP1 and DLX7) in myeloid leukemia, but the functional role of DLX4 isoforms remains poorly understood. In the work described herein, we further determined the underlying role of DLX4 isoforms in chronic myeloid leukemia (CML) leukemogenesis. METHODS: The expression and methylation of DLX4 isoforms were detected by real-time quantitative PCR (RT-qPCR) and real-time quantitative methylation-specific PCR (RT-qMSP) in patients with CML. The functional role of DLX4 isoforms was determined in vitro and in vivo. The molecular mechanism of DLX4 isoforms in leukemogenesis was identified based on chromatin immunoprecipitation with high-throughput sequencing (ChIP-Seq)/assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-Seq) and RNA sequencing (RNA-Seq). RESULTS: BP1 expression was increased in patients with CML with unmethylated promoter, but DLX7 expression was decreased with hypermethylated promoter. Functionally, overexpression of BP1 increased the proliferation rate of K562 cells with S/G2 promotion, whereas DLX7 overexpression reduced the proliferation rate of K562 cells with G1 arrest. Moreover, K562 cells with BP1 overexpression increased the tumorigenicity in NCG mice, whereas K562 cells with DLX7 overexpression decreased the tumorigenicity. Mechanistically, a total of 91 genes including 79 messenger RNAs (mRNAs) and 12 long noncoding RNAs (lncRNAs) were discovered by ChIP-Seq and RNA-Seq as direct downstream targets of BP1. Among the downstream genes, knockdown of RREB1 and SGMS1-AS1 partially revived the proliferation caused by BP1 overexpression in K562 cells. Similarly, using ATAC-Seq and RNA-Seq, a total of 282 genes including 151 mRNA and 131 lncRNAs were identified as direct downstream targets of DLX7. Knockdown of downstream genes PTPRB and NEAT1 partially revived the proliferation caused by DLX7 overexpression in K562 cells. Finally, we also identified and validated a SGMS1-AS1/miR-181d-5p/SRPK2 competing endogenous RNA (ceRNA) network caused by BP1 overexpression in K562 cells. CONCLUSIONS: The current findings reveal that DNA methylation-mediated differential expression of DLX4 isoforms BP1 and DLX7 plays opposite functions in leukemogenesis. BP1 plays an oncogenic role in leukemia development, whereas DLX7 acts as a tumor suppressor gene. These results suggest DLX4 as a therapeutic target for antileukemia therapy.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , MicroRNAs , RNA, Long Noncoding , Animals , Carcinogenesis/genetics , Cell Line, Tumor , Cell Proliferation/genetics , DNA Methylation/genetics , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Mice , MicroRNAs/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Isoforms/therapeutic use , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , Transcription Factors
8.
Front Oncol ; 12: 897898, 2022.
Article in English | MEDLINE | ID: mdl-35847864

ABSTRACT

Epigenetic dysregulation of cancer-associated genes has been identified to contribute to the pathogenesis of myelodysplastic syndromes (MDS). However, few studies have elucidated the whole-genome DNA methylation in the initiation pathogenesis of MDS. Reduced representation bisulfite sequencing was performed in five de novo MDS patients and four controls to investigate epigenetic alterations in MDS pathogenesis. The mean global methylation in five MDS patients showed no significant difference compared with the four controls. In depth, a total of 1,459 differentially methylated fragments, including 759 hypermethylated and 700 hypomethylated fragments, were identified between MDS patients and controls. Targeted bisulfite sequencing further identified that hypermethylation of DLEU7, FOXR1, LEP, and PANX2 were frequent events in an additional cohort of MDS patients. Subsequently, LEP hypermethylation was confirmed by real-time quantitative methylation-specific PCR in an expanded cohort of larger MDS patients. In clinics, LEP hypermethylation tended to be associated with lower bone marrow blasts and was significantly correlated with U2AF1 mutation. Survival analysis indicated that LEP hypermethylation was associated with a markedly longer survival time but was not an independent prognostic biomarker in MDS patients. Functional studies revealed pro-proliferative and anti-apoptotic effects of leptin in the MDS cell line SKM-1, and it was significantly associated with cell growth and death as well as the Toll-like receptor and NF-kappa B signaling pathways. Collectively, our findings demonstrated that whole-genome DNA methylation analysis identified novel epigenetic alterations such as DLEU7, FOXR1, LEP, and PANX2 methylations as frequent events in MDS. Moreover, LEP might play a role in MDS pathogenesis, and LEP hypermethylation was associated with longer survival but not as an independent prognostic biomarker in MDS.

9.
Leukemia ; 36(10): 2488-2498, 2022 10.
Article in English | MEDLINE | ID: mdl-35906386

ABSTRACT

Epigenetic modifications have been found to play crucial roles in myelodysplastic neoplasm (MDS) progression. Previously, we investigated genome-wide DNA methylation alterations during MDS evolution to acute myeloid leukemia (AML) by next-generation sequencing (NGS). Herein, we further determined the role and clinical implications of an evident methylation change in CpG islands at the SLIT2 promoter identified by NGS. First, increased SLIT2 promoter methylation was validated in 11 paired MDS/AML patients during disease evolution. Additionally, SLIT2 promoter methylation was markedly increased in MDS/AML patients compared with controls and was correlated with poor clinical phenotype and outcome. Interestingly, SLIT2 expression was particularly upregulated in AML patients and was not correlated with SLIT2 promoter methylation. However, the SLIT2-embedded genes SLIT2-IT1 and miR-218 were downregulated in AML patients, which was negatively associated with SLIT2 promoter methylation and further validated by demethylation studies. Functionally, SLIT2-IT1/miR-218 overexpression exhibited antileukemic effects by affecting cell proliferation, apoptosis and colony formation in vitro and in vivo. Mechanistically, SLIT2-IT1 may function as a competing endogenous RNA by sponging miR-3156-3p to regulate BMF expression, whereas miR-218 may directly target HOXA1 in MDS progression. In summary, our findings demonstrate that SLIT2 promoter hypermethylation is associated with disease evolution in MDS and predicts poor prognoses in both MDS and AML. Epigenetic inactivation of SLIT2-IT1/miR-218 by SLIT2 promoter hypermethylation could be a promising therapeutic target in MDS.


Subject(s)
Leukemia, Myeloid, Acute , MicroRNAs , Myelodysplastic Syndromes , Carcinogenesis/genetics , DNA Methylation , Humans , Intercellular Signaling Peptides and Proteins/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , MicroRNAs/genetics , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/therapy , Nerve Tissue Proteins/genetics , Prognosis
10.
Cancers (Basel) ; 14(10)2022 May 23.
Article in English | MEDLINE | ID: mdl-35626163

ABSTRACT

As the first identified selenoprotein, glutathione peroxidase 1 (GPX1) is a widely and abundantly expressed antioxidant enzyme. GPX1 utilizes glutathione as a substrate to catalyze hydrogen peroxide, lipid peroxide, and peroxynitrite, thereby reducing intracellular oxidative stress. The GPX1 gene is regulated at transcriptional, post-transcriptional, and translational levels. Numerous case-control studies and meta-analyses have assessed the association between a functional genetic polymorphism of the GPX1 gene, named Pro198Leu (rs1050450 C>T), and cancer susceptibility in different populations. GPX1 polymorphism has type-specific effects as a candidate marker for cancer risk, but the association between GPX1 variants and cancer susceptibility remains controversial in different studies. GPX1 is abnormally elevated in most types of cancer but has complex dichotomous roles as tumor suppressor and promoter in different cancers. GPX1 can participate in various signaling pathways to regulate tumor biological behaviors, including cell proliferation, apoptosis, invasion, immune response, and chemoresistance. In this review, we comprehensively summarize the controversial associations between GPX1 polymorphism and cancer risks and further discuss the relationships between the aberrant expressions of GPX1 and tumorigenesis. Further studies are needed to elucidate the clinical significance of GPX1 as a potential prognostic biomarker and novel therapeutic target in various malignancies.

11.
Biosci Rep ; 42(5)2022 05 27.
Article in English | MEDLINE | ID: mdl-35506368

ABSTRACT

The objective of our study was to measure DLEU7-AS1 expression in de novo acute myeloid leukemia (AML) whilst also analyzing its clinical relevance. We used gene expression data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO), Cancer Cell Line Encyclopedia (CCLE) and Genotype-Tissue Expression project (GTEx) to assess the expression profile of DLEU7-AS1 in pan-cancers, cancer cell lines and normal tissues. Reverse transcription-quantitative PCR was used to measure DLEU7-AS1 expression in bone marrow from 30 normal individuals and 110 patients with de novo AML. DLEU7-AS1 expression was found to be markedly reduced in the AML samples of the TCGA pan-cancer datasets. In our PCR validation, DLEU7-AS1 expression was significantly decreased in the AML samples compared with that in controls (P<0.001). Low DLEU7-AS1 expression (DLEU7-AS1low) correlated positively with lower blood platelet counts (P=0.029). In addition, low DLEU7-AS1 expression was more frequently observed in the intermediate (58%; 44/76) and favorable karyotypes (65%; 15/23) compared with that in the poor karyotype (10%; 1/10; P=0.005). In particular, patients with high expression levels of DLEU7-AS1 (DLEU7-AS1high) showed lower complete remission rates (P=0.002) than patients with DLEU7-AS1low. Survival analysis revealed that patients with DLEU7-AS1low had longer overall survival (OS) than patients with DLEU7-AS1high (P<0.05). Multivariate Cox analysis demonstrated that in patients with non-acute promyelocytic leukemia (non-M3) who were ≤60 years old, DLEU7-AS1 expression was an independent prognostic factor for OS. Furthermore, we found distinct correlations among the expression of DLEU7-AS1, infiltration by immune cells and immune checkpoint genes in AML.


Subject(s)
Leukemia, Myeloid, Acute , RNA, Long Noncoding , Humans , Karyotype , Middle Aged , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Remission Induction
12.
BMC Med Genomics ; 15(1): 38, 2022 02 28.
Article in English | MEDLINE | ID: mdl-35227274

ABSTRACT

BACKGROUND: Recently, an increasing number of studies have reported that sperm-associated antigen (SPAG) proteins play crucial roles in solid tumorigenesis, and may serve as potentially helpful biomarkers for cancer diagnosis and prognosis. However, very few studies systematically investigated the expression of SPAG family members and their clinical significance in acute myeloid leukemia (AML). METHODS: The expression of SPAGs and their prognostic significance in AML were determined by a systematic analysis on data gathered from public databases, and the results were validated in clinical samples. RESULTS: Using public data, we identified only increased SPAG1 expression negatively associated with survival in AML by Cox regression (P < 0.001) and Kaplan-Meier analysis (P < 0.001). The prognostic value of SPAG1 expression was further confirmed in other independent cohorts. Clinically, higher SPAG1 expression was significantly correlated with white blood cell counts (P = 0.014) and French-American-British (FAB) subtypes (P = 0.024). Moreover, higher SPAG1 expression was more common in + 8 patients (P = 0.034), rarely found with t(8;21) (P = 0.014), and correlated with FLT3 (P < 0.001) and DNMT3A mutations (P = 0.001). Despite these associations, multivariate analysis confirmed the independent prognostic value of SPAG1 expression in AML (P < 0.001). Notably, AML patients with higher SPAG1 expression may benefit from hematopoietic stem cell transplantation (HSCT), whereas patients with lower SPAG1 expression appeared less likely to benefit. Finally, we further validated that SPAG1 expression was significantly increased in newly diagnosed AML patients compared with normal controls (P < 0.001) and with AML patients who achieved complete remission (P < 0.001). Additionally, SPAG1 expression could act as a potentially helpful biomarker for the diagnosis and prognosis of AML (P < 0.001 and = 0.034, respectively). CONCLUSIONS: Our findings demonstrated that SPAG1 overexpression may serve as an independent prognostic biomarker and may guide the choice between HSCT and chemotherapy in patients with AML.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Antigens, Surface , Biomarkers, Tumor/genetics , Computational Biology , GTP-Binding Proteins/genetics , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Mutation , Prognosis
13.
Bioengineered ; 12(2): 11987-12002, 2021 12.
Article in English | MEDLINE | ID: mdl-34787059

ABSTRACT

4IgB7-H3 (4Ig) and 2IgB7-H3 (2Ig) expression characteristics in acute myeloid leukemia (AML) remain unknown. This study investigated mRNA and membrane protein expression of two B7-H3 isoforms in AML cell lines and de novo patients by using RT-PCR and flow cytometry, and analyzed the B7-H3 promoter methylation state by utilizing RQ-MSP. 4Ig was the dominant isoform. 2Ig mRNA expression rate and abundance were elevated in AML in comparison with controls (P = 0.000 and 0.000), while no significant difference in 4Ig (P = 0.802, P = 0.398). Membrane protein levels of B7-H3 isoforms in AML was higher than controls, detected by total B7-H3 expression rate (P = 0.002), total B7-H3 mean fluorescence intensity (MFI) ratio of blast cells and lymphocytes (MFI ratio) (P = 0.000), and 4Ig B7-H3 MFI ratio (P = 0.005). Compared with 2Iglow group, 2Ighigh patients had older age, lower NPM1 mutation, higher FLT3-ITD mutation, and declining complete remission (CR) rates (P = 0.026, 0.012, 0.047, and 0.028). In B7-H3high group, there was a trend toward older age, M4 and M5, worse karyotype, and lower CR rates, although with no marked difference (P > 0.05). The overall survival (OS) of 2Ighigh and B7-H3high groups were shorter than that of 2Iglow and B7-H3low groups in the whole and non-M3 AML cohorts (P = 0.006 and 0.046; P = 0.003 and 0.032). Besides, an unmethylated B7-H3 promoter was identified. In conclusion, 2Ig mRNA and total B7-H3 membrane protein tended to have potential diagnostic value for AML. Specifically, high 2Ig mRNA and total B7-H3 membrane protein expression indicate worse OS. 4Ig and 2Ig expression are methylation-independent.


Subject(s)
B7 Antigens/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Adolescent , Adult , B7 Antigens/metabolism , Case-Control Studies , Cell Line, Tumor , Humans , Kaplan-Meier Estimate , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methylation , Middle Aged , Multivariate Analysis , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , ROC Curve , Treatment Outcome , Young Adult
14.
Cancer Cell Int ; 21(1): 615, 2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34809620

ABSTRACT

BACKGROUND: There is mounting evidence that demonstrated the association of aberrant NEDD4L expression with diverse human cancers. However, the expression pattern and clinical implication of NEDD4L in acute myeloid leukemia (AML) remains poorly defined. METHODS: We systemically determined NEDD4L expression with its clinical significance in AML by both public data and our research cohort. Moreover, biological functions of NEDD4L in leukemogenesis were further tested by in vitro experiments. RESULTS: By the public data, we identified that low NEDD4L expression was correlated with AML among diverse human cancers. Expression of NEDD4L was remarkably decreased in AML compared with controls, and was confirmed by our research cohort. Clinically, low expression of NEDD4L was correlated with greatly lower age, higher white blood cells, and higher bone marrow/peripheral blood blasts. Moreover, NEDD4L underexpression was positively correlated with normal karyotype, FLT3 and NPM1 mutations, but negatively associated with complex karyotype and TP53 mutations. Importantly, the association between NEDD4L expression and survival was also discovered in cytogenetically normal AML patients. Finally, a number of 1024 RNAs and 91 microRNAs were identified to be linked to NEDD4L expression in AML. Among the negatively correlated microRNAs, miR-10a was also discovered as a microRNA that may directly target NEDD4L. Further functional studies revealed that NEDD4L exhibited anti-proliferative and pro-apoptotic effects in leukemic cell line K562. CONCLUSIONS: Our findings indicated that NEDD4L underexpression, as a frequent event in AML, was associated with genetic abnormalities and prognosis in AML. Moreover, NEDD4L expression may be involved in leukemogenesis with potential therapeutic target value.

15.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(5): 1436-1449, 2021 Oct.
Article in Chinese | MEDLINE | ID: mdl-34627422

ABSTRACT

OBJECTIVE: LncRNA ITGB2-AS1 has been found to play important roles in the occurrence and development of human solid tumors. However, its role in hematological diseases, especially acute myeloid leukemia (AML), remains unclear. The aim of this study was to identify the expression pattern of ITGB2-AS1 in AML patients and to further explore its clinical significance. METHODS: ITGB2-AS1 expression was analyzed in public datasets (including TCGA and GSE63270) and further validated in a cohort of 109 AML patients by real-time quantitative PCR (RT-qPCR). RESULTS: The level of ITGB2-AS1 was up-regulated among two independent cohorts (TCGA, P<0.05; GSE63270, P<0.05), which was confirmed by the data from 109 AML patients enrolled in this study (P<0.05). Clinically, high ITGB2-AS1 expression was associated with older age (P=0.023) and lower complete remission (CR) rate (P=0.005). Multivariate analysis identified that high ITGB2-AS1 expression was an independent prognostic factor not only for CR rate (P=0.027) but also for overall survival (OS) time (P=0.011), and ITGB2-AS1 was positively correlated with ITGB2 expression in both TCGA (r=0.74, P<0.001) and clinical data detected in this study (r=0.881, P<0.001). High ITGB2 expression was also associated with older age (P=0.02) and lower CR rate (P=0.020). Moreover, high ITGB2 expression predicted worse OS (P=0.028). CONCLUSION: ITGB2-AS1 is overexpressed in AML and predicts poor prognosis in AML patients.


Subject(s)
Leukemia, Myeloid, Acute , RNA, Long Noncoding , Aged , Humans , Leukemia, Myeloid, Acute/genetics , Prognosis , RNA, Long Noncoding/genetics
16.
Cancer Med ; 10(15): 5283-5296, 2021 08.
Article in English | MEDLINE | ID: mdl-34227248

ABSTRACT

It was previously reported that PRR34-AS1 was overexpressed in some solid tumors. PRR34-AS1 promoter was shown to have a differential methylation region (DMR), and was hypomethylated in acute myeloid leukemia (AML). Therefore, the present study used real-time quantitative PCR (RQ-PCR) to explore the expression characteristics of PRR34-AS1 in AML. In addition, the correlation between the expression of PRR34-AS1 and clinical prognosis of AML was determined. The findings of this study indicated that high PRR34-AS1 expression was bound up with shorter overall survival (OS) in AML patients (p = 0.002). Moreover, patients with high expression of PRR34-AS1 had significantly lower complete remission (CR) rate compared with those with low expression of PRR34-AS1 after induction chemotherapy. Furthermore, multivariate analysis confirmed that PRR34-AS1 expression was an independent factor affecting CR in whole-AML, non-APL-AML, and CN-AML patients (p = 0.032, 0.039, and 0.036, respectively). Methylation-specific PCR (MSP) and bisulfite sequencing PCR (BSP) were used to explore the methylation status of PRR34-AS1. PRR34-AS1 promoter showed a pattern of hypomethylation in AML patients compared with normal controls (p = 0.122). Notably, of whole-AML and non-APL-AML patients, PRR34-AS1 hypomethylated patients presented a significantly shorter OS than those with a hypermethylated PRR34-AS1 (p = 0.010 and 0.037, respectively). Multivariate analysis confirmed that the hypomethylation of PRR34-AS1 served as an independent prognostic indicator in both whole-cohort AML and non-APL-AML categories (p = 0.057 and 0.018, respectively). In summary, the findings of this study showed that abnormalities in PRR34-AS1 are associated with poor prognosis in AML. Therefore, monitoring this index may be important in the prognosis of AML and can provide information on effective chemotherapy against the disease.


Subject(s)
Leukemia, Myeloid, Acute/metabolism , Neoplasm Proteins/metabolism , Adult , Aged , Aged, 80 and over , DNA Methylation , Female , Humans , Induction Chemotherapy , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/mortality , Male , Middle Aged , Multivariate Analysis , Mutation , Neoplasm Proteins/genetics , Polymerase Chain Reaction/methods , Prognosis , Promoter Regions, Genetic , RNA, Messenger/metabolism , Young Adult
17.
Clin Epigenetics ; 13(1): 16, 2021 01 23.
Article in English | MEDLINE | ID: mdl-33485366

ABSTRACT

BACKGROUND: Obesity confers enhanced risk for multiple diseases including cancer. The DNA methylation alterations in obesity-related genes have been implicated in several human solid tumors. However, the underlying role and clinical implication of DNA methylation of obesity-related genes in acute myeloid leukemia (AML) has yet to be elucidated. RESULTS: In the discovery stage, we identified that DNA methylation-associated LEP expression was correlated with prognosis among obesity-related genes from the databases of The Cancer Genome Atlas. In the validation stage, we verified that LEP hypermethylation was a frequent event in AML by both targeted bisulfite sequencing and real-time quantitative methylation-specific PCR. Moreover, LEP hypermethylation, correlated with reduced LEP expression, was found to be associated with higher bone marrow blasts, lower platelets, and lower complete remission (CR) rate in AML. Importantly, survival analysis showed that LEP hypermethylation was significantly associated with shorter overall survival (OS) in AML. Moreover, multivariate analysis disclosed that LEP hypermethylation was an independent risk factor affecting CR and OS among non-M3 AML. By clinical and bioinformatics analysis, LEP may be also regulated by miR-517a/b expression in AML. CONCLUSIONS: Our findings indicated that the obesity-related gene LEP methylation is associated with LEP inactivation, and acts as an independent prognostic predictor in AML.


Subject(s)
DNA Methylation , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/complications , Leukemia, Myeloid, Acute/genetics , Obesity/complications , Obesity/etiology , Obesity/genetics , Humans , Mutation , Prognosis , Promoter Regions, Genetic , Survival Analysis
18.
Cell Death Dis ; 11(11): 997, 2020 11 20.
Article in English | MEDLINE | ID: mdl-33219204

ABSTRACT

The potential mechanism of myelodysplastic syndromes (MDS) progressing to acute myeloid leukemia (AML) remains poorly elucidated. It has been proved that epigenetic alterations play crucial roles in the pathogenesis of cancer progression including MDS. However, fewer studies explored the whole-genome methylation alterations during MDS progression. Reduced representation bisulfite sequencing was conducted in four paired MDS/secondary AML (MDS/sAML) patients and intended to explore the underlying methylation-associated epigenetic drivers in MDS progression. In four paired MDS/sAML patients, cases at sAML stage exhibited significantly increased methylation level as compared with the matched MDS stage. A total of 1090 differentially methylated fragments (DMFs) (441 hypermethylated and 649 hypomethylated) were identified involving in MDS pathogenesis, whereas 103 DMFs (96 hypermethylated and 7 hypomethylated) were involved in MDS progression. Targeted bisulfite sequencing further identified that aberrant GFRA1, IRX1, NPY, and ZNF300 methylation were frequent events in an additional group of de novo MDS and AML patients, of which only ZNF300 methylation was associated with ZNF300 expression. Subsequently, ZNF300 hypermethylation in larger cohorts of de novo MDS and AML patients was confirmed by real-time quantitative methylation-specific PCR. It was illustrated that ZNF300 methylation could act as a potential biomarker for the diagnosis and prognosis in MDS and AML patients. Functional experiments demonstrated the anti-proliferative and pro-apoptotic role of ZNF300 overexpression in MDS-derived AML cell-line SKM-1. Collectively, genome-wide DNA hypermethylation were frequent events during MDS progression. Among these changes, ZNF300 methylation, a regulator of ZNF300 expression, acted as an epigenetic driver in MDS progression. These findings provided a theoretical basis for the usage of demethylation drugs in MDS patients against disease progression.


Subject(s)
DNA Methylation/genetics , Epigenesis, Genetic/genetics , Myelodysplastic Syndromes/genetics , Adult , Aged , Disease Progression , Humans , Middle Aged , Prognosis
19.
Am J Transl Res ; 12(9): 4840-4852, 2020.
Article in English | MEDLINE | ID: mdl-33042393

ABSTRACT

Abnormal expression of CRIP1 has been identified in numerous solid tumors. However, CRIP1 expression and its regulation are little known in acute myeloid leukemia (AML). The purpose of this study was to evaluate the expression and regulation of CRIP1 and the clinical implications of CRIP1 aberration in AML. Real-time quantitative PCR was carried out to detect the level of CRIP1 expression in 138 AML patients and 38 controls. CRIP1 methylation was detected by methylation-specific PCR and bisulfite sequencing PCR. Five public available AML datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were further analyzed. The level of CRIP1 expression was up-regulated in AML patients compared with controls (P = 0.045). CRIP1 high patients had a significantly lower complete remission (CR) rate than CRIP1 low patients (P = 0.020). CRIP1 high group had a shorter overall survival (OS) and leukemia-free survival (LFS) than CRIP1 low group in cytogenetically normal AML (CN-AML) patients (P = 0.007 and 0.012, respectively). Multivariate analysis further confirmed that high CRIP1 expression was an independent risk factor for LFS in CN-AML patients (P = 0.005). However, we found that CRIP1 expression was not associated with the status of its promoter, which was nearly fully unmethylated both in controls and AML patients. Furthermore, our results were validated using the published GEO datasets and TCGA datasets. Our findings suggest that high CRIP1 expression is independently related with unfavorable prognosis in CN-AML.

20.
Cancer Biomark ; 29(3): 387-397, 2020.
Article in English | MEDLINE | ID: mdl-32741803

ABSTRACT

BACKGROUND: The runt-related transcription factor family (RUNXs) including RUNX1, RUNX2, and RUNX3 are key transcriptional regulators in normal hematopoiesis. RUNXs dysregulations caused by aberrant expression or mutation are frequently seen in various human cancers especially in acute myeloid leukemia (AML). OBJECTIVE: We systemically analyzed the expression of RUNXs and their relationship with clinic-pathological features and prognosis in AML patients. METHODS: Expression of RUNXs was analyzed between AML patients and normal controls from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) projects. Correlations between RUNXs expression and clinical features together with survival were further analyzed. RESULTS: All RUNXs expression in AML patients was significantly increased as compared with controls. RUNXs expression was found to be significantly associated with genetic abnormalities such as RUNX1 mutation, t(8;21) and inv(16)/t(16;16). By Kaplan-Meier analysis, only RUNX3 overexpression was associated with shorter overall survival (OS) and disease-free survival (DFS) among non-M3 AML patients. Notably, in high RUNX3 expression groups, patients received hematopoietic stem cell transplantation (HSCT) had markedly better OS and DFS than patients without HSCT among both all AML and non-M3 AML. In low RUNX3 expression groups, there were no significant differences in OS and DFS between HSCT and non-HSCT groups among both all AML and non-M3 AML. In addition, a total of 835 differentially expressed genes and 69 differentially expressed microRNAs were identified to be correlated with RUNX3 expression in AML. CONCLUSION: RUNXs overexpression was a frequent event in AML, and was closely associated with diverse genetic alterations. Moreover, RUNX3 expression may be associated with clinical outcome, and helpful for guiding treatment choice between HSCT and chemotherapy in AML.


Subject(s)
Core Binding Factor Alpha 3 Subunit/metabolism , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute/genetics , Neoplasm Recurrence, Local/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Bone Marrow/pathology , Case-Control Studies , Chromosomes, Human, Pair 16/genetics , Chromosomes, Human, Pair 8/genetics , Core Binding Factor Alpha 2 Subunit/genetics , DNA Methylation , Datasets as Topic , Disease-Free Survival , Female , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid, Acute/mortality , Leukemia, Myeloid, Acute/pathology , Leukemia, Myeloid, Acute/therapy , Male , Middle Aged , Mutation , Neoplasm Recurrence, Local/genetics , Prognosis , Translocation, Genetic , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...