Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 102
Filter
1.
BMC Genomics ; 24(1): 781, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102559

ABSTRACT

BACKGROUND: Odorant-binding proteins (OBPs) are essential in insect's daily behaviors mediated by olfactory perception. Megachile saussurei Radoszkowski (Hymenoptera, Megachilidae) is a principal insect pollinating alfalfa (Medicago sativa) in Northwestern China. The olfactory function have been less conducted, which provides a lot of possibilities for our research. RESULTS: Our results showed that 20 OBPs were identified in total. Multiple sequence alignment analysis indicated MsauOBPs were highly conserved with a 6-cysteine motif pattern and all belonged to the classic subfamily, coding 113-196 amino acids and sharing 41.32%-99.12% amino acid identity with known OBPs of other bees. Phylogenetic analysis indicated there were certain homologies existed among MsauOBPs and most sequences were clustered with that of Osmia cornuta (Hymenoptera, Megachilidae). Expression analysis showed the identified OBPs were mostly enriched in antennae instead of other four body parts, especially the MsauOBP2, MsauOBP3, MsauOBP4, MsauOBP8, MsauOBP11 and MsauOBP17, in which the MsauOBP2, MsauOBP4 and MsauOBP8 presented obvious tissue-biased expression pattern. Molecular docking results indicated MsauOBP4 might be the most significant protein in recognizing alfalfa flower volatile 3-Octanone, while MsauOBP13 might be the most crucial protein identifying (Z)-3-hexenyl acetate. It was also found the lysine was a momentous hydrophilic amino acid in docking simulations. CONCLUSION: In this study, we identified and analyzed 20 OBPs of M. saussurei. The certain homology existed among these OBPs, while some degree of divergence could also be noticed, indicating the complex functions that different MsauOBPs performed. Besides, the M. saussurei and Osmia cornuta were very likely to share similar physiological functions as most of their OBPs were clustered together. MsauOBP4 might be the key protein in recognizing 3-Octanone, while MsauOBP13 might be the key protein in binding (Z)-3-hexenyl acetate. These two proteins might contribute to the alfalfa-locating during the pollination process. The relevant results may help determine the highly specific and effective attractants for M. saussurei in alfalfa pollination and reveal the molecular mechanism of odor-evoked pollinating behavior between these two species.


Subject(s)
Hymenoptera , Receptors, Odorant , Bees , Animals , Hymenoptera/metabolism , Odorants , Amino Acid Sequence , Phylogeny , Molecular Docking Simulation , Gene Expression Profiling , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Amino Acids/metabolism , Insect Proteins/metabolism , Arthropod Antennae/metabolism , Transcriptome
2.
Pest Manag Sci ; 79(12): 5250-5259, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37595072

ABSTRACT

BACKGROUND: Potato, Solanum tuberosum, is one of the most important food crops in the world, playing a significant role in global food security. However, many potato industries and farms may suffer losses of tuber yield and quality in storage due to lepidopteran pests. Here, we evaluated the effectiveness of an ectoparasitic idiobiont mite Pyemotes zhonghuajia in the biological control of the potato tuber moth (PTM) Phthorimaea operculella by determining the lethal, sublethal (nonconsumptive) and transgenerational effects of P. zhonghuajia of various population densities and exposure durations on PTM survival, development and reproduction. RESULTS: Pyemotes zhonghuajia females were capable of killing all instar stages of PTM, while resistance to mite parasitism increased with the development of PTM life stage. The mortality of mature larvae (i.e., fourth instar) and pupae increased with increasing mite density and exposure duration. P. zhonghuajia imposed significant negative sublethal impacts on PTM pupation rate, female fecundity and adult longevity but not on immature development. The sublethal stress was transgenerational, resulting in lower reproduction in the offspring generation. CONCLUSION: P. zhonghuajia induces lethal, sublethal and transgenerational effects and significantly decreases PTM survival and reproductive out, demonstrating its high efficiency in the biological control of PTM. Our study provides insight into the mechanisms underlying the nonconsumptive effects of parasitism in an ectoparasite-host system and delivers critical information for the design and implementation of augmentative releases of P. zhonghuajia in the biological control of PTM in potato storage. © 2023 Society of Chemical Industry.


Subject(s)
Mites , Moths , Solanum tuberosum , Female , Animals , Pest Control, Biological/methods , Larva
3.
Insects ; 14(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37233056

ABSTRACT

Tetranychus urticae Koch is a worldwide agricultural pest mite that feeds on more than 1100 kinds of crops. The mite has developed a high level of tolerance to high temperatures, but the physiological mechanism underlying the outstanding adaptability of this pest to high temperatures remains unclear. To clarify the physiological mechanisms of T. urticae in response to short-term heat stress, four temperatures (36, 39, 42, and 45 °C) and three short-term heat durations (2, 4, and 6 h) were conducted to test the effects on protein content, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the total antioxidant capacity (T-AOC). The results showed that protein content, antioxidant enzyme activity, and T-AOC in T. urticae were significantly induced by heat stress. These results suggest that heat stress induces oxidative stress and that antioxidant enzymes play an important role in reducing oxidative damage in T. urticae. The data of this study will provide a basis for further research on the molecular mechanisms of thermostability and ecological adaptability of T. urticae.

4.
Front Zool ; 19(1): 33, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36517816

ABSTRACT

BACKGROUND: The cotton mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae) is one of the most devastating sap-sucking pests of cultivated plants. The success of P. solenopsis is attributable to its ecological resilience and insecticide resistance, making its control extremely difficult and expensive. Thus, alternative safe approaches are needed to prevent the pest population from reaching the economic threshold. One of these novel approaches is based on the fact that chemical communication via the olfactory system drives critical behaviors required for the survival and development of the species. This knowledge can be useful for controlling insect pests using traps based on semiochemicals. The antennae of insects are an invaluable model for studying the fundamentals of odor perception. Several efforts have been made to investigate the histological and ultrastructural organization of the olfactory organs, such as the antennae and maxillary palps, in many insect species. However, studies on the antennal sensory structures of Phenacoccus species are lacking. Furthermore, although enormous progress has been made in understanding the antennal structures of many mealybug species, the olfactory sensilla in the antennae of P. solenopsis have not yet been described. In this study, we describe, for the first time, the morphology and distribution of the antennal sensilla in male and female P. solenopsis using scanning electron microscopy. RESULTS: Our results revealed that the entire antennae length and the number of flagellar segments were different between the sexes. Eight morphological types of sensilla were identified on male antennae: trichoid sensilla, chaetic sensilla (three subtypes), basiconic sensilla (two subtypes), and campaniform sensilla (two subtypes). Six morphological types of sensilla were found on female antennae. Sensilla chaetica of subtype 2 and campaniform sensilla of subtype 1 were distributed only on male antennae, suggesting that these sensilla are involved in the recognition of female sex pheromones. The subtype 1 of sensilla chaetica was significantly more abundant on female antennae than on male ones, while subtype 3 was only located on the terminal flagellar segment of the antenna in both sexes. CONCLUSIONS: This study provides insightful information for future electrophysiological and behavioral studies on chemical communication in insects, particularly the cotton mealybug, P. solenopsis that could help in developing new strategies for controlling this economically important insect species.

5.
Front Physiol ; 13: 1024136, 2022.
Article in English | MEDLINE | ID: mdl-36505077

ABSTRACT

Insect chitinases play a crucial part to digest chitin in the exoskeleton during the molting process. However, research on insect chitinase related to the environmental stress response is very limited. This study was the first conducted to expression analysis of chitinase- related genes in A. pisum under abiotic stresses. Here, we identified five chitinase-like proteins (ApIDGF, ApCht3, ApCht7, ApCht10 and ApENGase), and clustered them into five groups (group II, III, V, Ⅹ, and ENGase). Developmental expression analysis revealed that the five A. pisum chitinase-related genes were expressed at whole developmental stages with different relative expression patterns. When aphids were exposed to various abiotic stresses including temperature, insecticide and the stress 20-hydroxyecdysone (20E), all five chitinase genes were differentially expressed in A. pisum. The results showed that insecticide such as imidacloprid down-regulated the expression of these five Cht-related genes. Analysis of temperature stress of A. pisum chitinase suggested that ApCht7 expression was high at 10°C, which demonstrates its important role in pea aphids under low temperature. Conversely, ApCht10 was more active under high temperature stress, as it was significantly up-regulated at 30°C. Besides, 20E enhanced ApCht3 and ApCht10 expression in A. pisum, but reduced ApCht7 expression. These findings provide basic information and insights for the study of the role of these genes under abiotic stress, which advances our knowledge in the management of pea aphids under multiple stresses.

6.
Biology (Basel) ; 11(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36552334

ABSTRACT

Understanding the drivers of urban plant diversity (UPD) and above ground biomass (AGB) in urbanized areas is critical for urban ecosystem services and biodiversity protection. The relationships between UPD and AGB have been investigated simultaneously. However, the drivers of UPD and AGB have been explored independently in tropical coastal areas at different time points. To fill this gap, we conducted a remote sensing interpretation, field plant plot surveys, and compiled socioeconomic and urban greening management survey data. We conducted spatial analyses to investigate the relationships among UPD and socioeconomic variables across different primary and secondary urban functional units (UFUs) in the tropical urban ecosystems of the coastal city of Haikou, China. The primary UFUs with the highest AGB were the recreation and leisure districts in 2015 and 2021. In 2015, AGB was mainly correlated with the number of herb species in undeveloped land and the districts of industry, business, recreation, and leisure. In 2021, AGB was affected primarily by the frequency of fertilizing, maintenance, and watering. Our study found that the relationship between UPD and AGB varied across time and space in Haikou. The plant diversity and AGB's response to human activities and socioeconomics appear to have a time-lag effect. These results provide new insights in understanding how management decisions affect urban vegetation and could be used to guide future urban green space planning in Haikou.

7.
J Fungi (Basel) ; 8(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36354941

ABSTRACT

Brown rot caused by the pathogen of the genus Monilinia is the most destructive disease in peaches worldwide. It has seriously reduced the economic value of the peach (Prunus persica (L.) Batsch) in Nyingchi and Qamdo, Tibet, China. Monilinia fructicola, Monilia mumecola, and M. yunnanensis have been reported as the causal agents of brown rot disease on stone fruits in China. In this study, we report on the identification of M. yunnanensis in peach orchards in Nyingchi and Qamdo, Tibet. From twenty-three isolates with the same characteristics, we identified the representative single-spore isolates T8-1, T8-8, and T8-20 as M. yunnanensis and confirmed that the Tibet brown rot disease was caused by M. yunnanensis based on the morphological characteristics and molecular analyses. The phylogenetic analysis of the glyceraldehyde-3-phosphate dehydrogenase (G3PDH) and ß-tubulin (TUB2) nucleotide sequences and the multiplex PCR identification revealed that the representative isolates T8-1, T8-8, and T8-20 were more closely related to M. yunnanensis than other Monilinia species. Furthermore, the biocontrol strain of Trichoderma T6 presented significant antagonistic activity on the M. yunnanensis T8-1 isolate (T8-1) among the five Trichoderma strains. The highest inhibitory rates for Trichoderma T6 and its fermentation product against T8-1 mycelial growth were 72.13% and 68.25%, respectively. The obvious inhibition zone displayed on the colony interaction area between the colony of T8-1 isolate and Trichoderma T6 and the morphological characterization of the T8-1 hyphae were enlarged and malformed after inoculation with the Trichoderma T6 fermentation product at 20-fold dilution. Our results indicate that the strain of Trichoderma T6 could be considered as a beneficial biocontrol agent in managing brown rot of peach fruit disease.

8.
Proc Natl Acad Sci U S A ; 119(42): e2211254119, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36227916

ABSTRACT

Iridoid monoterpenes, widely distributed in plants and insects, have many ecological functions. While the biosynthesis of iridoids has been extensively studied in plants, little is known about how insects synthesize these natural products. Here, we elucidated the biosynthesis of the iridoids cis-trans-nepetalactol and cis-trans-nepetalactone in the pea aphid Acyrthosiphon pisum (Harris), where they act as sex pheromones. The exclusive production of iridoids in hind legs of sexual female aphids allowed us to identify iridoid genes by searching for genes specifically expressed in this tissue. Biochemical characterization of candidate enzymes revealed that the iridoid pathway in aphids proceeds through the same sequence of intermediates as described for plants. The six identified aphid enzymes are unrelated to their counterparts in plants, conclusively demonstrating an independent evolution of the entire iridoid pathway in plants and insects. In contrast to the plant pathway, at least three of the aphid iridoid enzymes are likely membrane bound. We demonstrated that a lipid environment facilitates the cyclization of a reactive enol intermediate to the iridoid cyclopentanoid-pyran scaffold in vitro, suggesting that membranes are an essential component of the aphid iridoid pathway. Altogether, our discovery of this complex insect metabolic pathway establishes the genetic and biochemical basis for the formation of iridoid sex pheromones in aphids, and this discovery also serves as a foundation for understanding the convergent evolution of complex metabolic pathways between kingdoms.


Subject(s)
Aphids , Biological Products , Sex Attractants , Animals , Aphids/genetics , Aphids/metabolism , Biological Products/metabolism , Iridoids/chemistry , Iridoids/metabolism , Lipids , Monoterpenes/metabolism , Pheromones/metabolism , Plants/metabolism , Sex Attractants/genetics , Sex Attractants/metabolism
9.
J Agric Food Chem ; 70(37): 11792-11803, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36095120

ABSTRACT

Odorant-binding protein (OBP) is a potential target for developing insect behavior control agents due to its properties in transporting semiochemicals. In this study, 12 novel jasmonic acid (JA) derivatives were rationally designed and synthesized based on the binding features between Acyrthosiphon pisum OBP3 (ApisOBP3) and compound D1 [(E)-3,7-dimethylocta-2,6-dien-1-yl 2-(3-oxo-2-pentylcyclopentyl)acetate] with a binding affinity (Kd) of 26.79 µM. Most novel JA derivatives displayed better binding affinities than D1 (Kd = 1-26 µM). Among them, compound 6b [(E)-3,7-dimethylocta-2,6-dien-1-yl-2-((Z)-3-((acryloyloxy)imino)-2-pentylcyclopentyl)acetate] is the most promising compound with an excellent Kd of 1.33 µM and a significant repellent activity with repellent rates of 50-60% against A. pisum and Myzus persicae. Both hydrophobic and electrostatic interactions were found to contribute significantly to the binding of 6b to ApisOBP3. This study provides significant guidance for the rational design and efficient identification of novel aphid repellents based on aphid OBPs.


Subject(s)
Aphids , Insect Repellents , Receptors, Odorant , Acetates/metabolism , Acetates/pharmacology , Animals , Aphids/chemistry , Cyclopentanes , Insect Proteins/metabolism , Oxylipins , Pheromones/metabolism , Receptors, Odorant/metabolism
10.
Ecotoxicol Environ Saf ; 245: 114101, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36155334

ABSTRACT

Recent studies have indicated that the plant volatile methyl benzoate (MB) exhibits significant insecticidal bioactivity against several common insects. However, the potential environmental hazards of MB and its safety to non-target organisms is poorly understood. In the present study, these characteristics were investigated through laboratory experiments and field investigations. The results revealed that MB was highly toxic to the agricultural pest, fall armyworm Spodoptera frugiperda. Compared with the commercial pesticide lambda-cyhalothrin, the toxicities of MB against S. frugiperda larvae and adults were comparable and 3.41 times higher, respectively. Behavioral bioassays showed that the percentage repellency of MB to S. frugiperda larvae was 56.72 %, and MB induced 69.40 % oviposition deterrence rate in S. frugiperda female adults. Furthermore, in terms of median lethal concentration (LC50) and median lethal doses (LD50), MB exhibited non-toxic effects on non-target animals with 3-d LC50 of > 1 % to natural predators (Coccinella septempunctata and Harmonia axyridis), 3-d LD50 of 467.86 µg/bee to the bumblebee Bombus terrestris, 14-d LC50 of 971.09 mg/kg to the earthworm Eisenia fetida, and 4-d LC50 of 47.30 mg/L to the zebrafish Brachydanio rerio. The accumulation of MB in the soil and earthworms was found to be extremely limited. Our comparative study clearly demonstrated that MB is effective as a selective botanical pesticide against S. frugiperda and it is safe to use in the tested environment, with no toxic effects on non-target animals and natural predators.


Subject(s)
Coleoptera , Insecticides , Oligochaeta , Animals , Benzoates , Female , Insecticides/toxicity , Larva , Soil , Spodoptera , Zebrafish
11.
Front Physiol ; 13: 937033, 2022.
Article in English | MEDLINE | ID: mdl-36060679

ABSTRACT

To study the physiological mechanisms of Neoseiulus barkeri in response to short-term heat stress, the eggs and the emerged adults were exposed to 38, 40, and 42°C, 85% ± 5%RH,16 h:8 h (L:D) for 2, 4, and 6 h. The activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) as well as the protein content of N. barkeri were examined. All treatments caused significant different changes compared to the untreated control. The protein content increased as the temperature increased, while it showed different changing trends with the prolongation of exposure duration. The enzymatic activity of SOD, CAT, and POD was significantly affected by the temperature treatment. Both the maximum and minimum level of the three enzymes after a short-term heat stress differed significantly to the control group (p < 0.05). The highest values of three enzymatic activities were all obtained at 40°C-4 h. Person correlation analysis indicates that the high temperature was the primary factor affecting the enzymatic activity, while the exposure duration of the heat stress was the secondary factor. In general, the short-term heat stress increased the protein content of Neoseiulus barkeri and up-regulated the expression of SOD, CAT, and POD activities as well.

12.
Front Cell Infect Microbiol ; 12: 929856, 2022.
Article in English | MEDLINE | ID: mdl-36046746

ABSTRACT

Objective: To evaluate the diagnostic performance of metagenomic next-generation sequencing (mNGS) and culture in pathogen detection among intensive care unit (ICU) and non-ICU patients with suspected pulmonary infection. Methods: In this prospective study, sputum samples were collected from patients with suspected pulmonary infection for 2 consecutive days and then subjected to DNA or RNA sequencing by mNGS or culture; 62 ICU patients and 60 non-ICU patients were admitted. In the end, comparisons were made on the pathogen species identified by mNGS and culture, the overall performance of these two methods in pathogen detection, and the most common pathogens detected by mNGS between the ICU and non-ICU groups. Results: In DNA and RNA sequencing, the positive rate of pathogen detection reached 96.69% (117/121) and 96.43% (108/112), respectively. In culture tests, the positive rate of the pathogen was 39.34% (48/122), much lower than that of DNA and RNA sequencing. In general, the positive rate of pathogen detection by sputum mNGS was significantly higher than that of sputum culture in the total and non-ICU groups (p < 0.001) but did not show a significant difference when compared to the result of sputum culture in the ICU group (p = 0.08). Haemophilus spp., Candida albicans, Enterococcus spp., and viruses from the mNGS results were excluded before comparing the overall performance of these two methods in pathogen detection. Specifically, among the 10 most common bacteria implied from the mNGS results, significant differences were observed in the number of cases of Haemophilus parainfluenzae, Acinetobacter baumannii, Klebsiella pneumoniae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Staphylococcus aureus, and Enterococcus faecalis between the ICU and non-ICU groups (p < 0.05). Conclusions: This study demonstrated the superiority of mNGS over culture in detecting all kinds of pathogen species in sputum samples. These results indicate that mNGS may serve as a valuable tool to identify pathogens, especially for ICU patients who are more susceptible to mixed infections.


Subject(s)
Metagenomics , Pneumonia , High-Throughput Nucleotide Sequencing/methods , Humans , Metagenome , Metagenomics/methods , Pneumonia/microbiology , Prospective Studies , Sensitivity and Specificity
13.
Front Physiol ; 13: 879401, 2022.
Article in English | MEDLINE | ID: mdl-35600294

ABSTRACT

Botanical pesticide is highly recommended for integrated pest management (IPM), due to its merits such as environmental friendliness, safe to non-target organisms, operators, animals, and food consumers. The experiment was conducted to determine the lethal and sub-lethal effects of allyl isothiocyanate (AITC) on eggs, third instar larvae, pupae, and females and males of Bradysia impatiens Johannsen (B. impatiens). Different concentrations of AITC under ambient CO2 by the conical flask sealed fumigation method were used for the experiment. The results showed that there was a significant linear relationship between different concentrations of AITC and the toxicity regression equation of B. impatiens. The sub-lethal concentrations of AITC had significant effects on the larval stage, pupal stage, pupation rate, pupal weight, adult emergence rate, and oviposition. The pupation rate, pupal weight, and adult emergency rate were significantly (p < 0.05) affected by AITC fumigation. The pupation rate was the lowest after fumigation treatment of AITC at LC50 (36.67%), followed by LC25 (41.94%), compared with the CK (81.39%). Female longevity was significantly (p < 0.05) shortened by fumigation at LC25 (1.75 d) and LC50 (1.64 d), compared with that of CK (2.94 d). Male longevity was shorter at LC25 (1.56 d) than at LC50 (1.25 d) and had no significant difference between these two treatments. The fumigation efficiency of AITC was significantly increased under high CO2 condition. Furthermore, detoxification enzyme activities and antioxidant enzyme activities were accumulated under high CO2 condition. The fumigation method in the application of AITC can be useful in areas where B. impatiens is a major concern.

14.
Insects ; 13(5)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35621734

ABSTRACT

The green peach aphid Myzus persicae (Hemiptera: Aphididae) relies heavily on its olfactory system to locate plant hosts, find mates, and avoid parasitoids or predators. The insect odorant receptors (ORs) have been proven to play a critical role in the perception of odorants from the environment. In the present study, 33 odorant receptor candidate genes including the Orco gene were identified from the antennal, head, legs and body transcriptomes of M. persicae. Phylogenetic analysis of ORs from seven different orders of insect species suggests that ORs from different insect species are highly divergent and most ORs from the same species formed monophyletic groups. In addition, the aphid ORs were clustered into six different sub-clades in the same clade. Furthermore, the genomic structure of the OR genes also tends to be consistent, suggesting that ORs from the family Aphididae have a relatively close evolutionary relationship. Reads per kilobase per million (RPKM) and tissue expression profiles analyses revealed that 27 out of the 33 MperORs were uniquely or primarily expressed in the antennae, indicating their putative roles in chemoreception. This work provides a foundation to further investigate the molecular and ecological functions of MperORs in the aphid-aphid, aphid-plant and aphid-natural enemy interactions.

15.
Front Plant Sci ; 13: 772685, 2022.
Article in English | MEDLINE | ID: mdl-35283914

ABSTRACT

Cucurbita pepo is one of the earliest cultivated crops. It is native to Central and South America and is now widely cultivated all over the world for its rich nutrition, short growth period, and high yield, which make it suitable for intercropping. Hull-less C. pepo L. (HLCP) is a rare variant in nature that is easier to consume. Its seed has a seed kernel but lacks a seed coat. The molecular mechanism underlying the lack of seed coat development in the HLCP variety is not clear yet. The BGISEQ-500 sequencing platform was used to sequence 18 cDNA libraries of seed coats from hulled C. pepo (CP) and HLCP at three developmental stages (8, 18, and 28 days) post-pollination. We found that lignin accumulation in the seed coat of the HLCP variety was much lower than that of the CP variety. A total of 2,099 DEGs were identified in the CP variety, which were enriched mainly in the phenylpropanoid biosynthesis pathway, amino sugar, and nucleotide sugar metabolism pathways. A total of 1,831 DEGs were identified in the HLCP variety and found to be enriched mainly in the phenylpropanoid biosynthesis and metabolism pathways of starch and sucrose. Among the DEGs, hub proteins (FusA), protein kinases (IRAK4), and several transcription factors related to seed coat development (MYB, bHLH, NAC, AP2/EREBP, WRKY) were upregulated in the CP variety. The relative expression levels of 12 randomly selected DEGs were determined using quantitative real-time PCR analysis and found to be consistent with those obtained using RNA-Seq, with a correlation coefficient of 0.9474. We found that IRAK4 protein kinases, AP2/EREBP, MYB, bHLH, and NAC transcription factors may play important roles in seed coat development, leading to the formation of HLCP.

16.
J Fungi (Basel) ; 8(2)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35205867

ABSTRACT

Apple Valsa canker is one of the most serious diseases, having caused significant apple yield and economic loss in China. However, there is still no effective biological methods for controlling this disease. Our present study focused on the inhibitory activity and mechanisms of Trichoderma longibrachiatum (T6) fermentation on Valsa mali that causes apple Valsa canker (AVC). Our results showed that the T6 fermentation exhibited effective antifungal activity on the mycelial growth and conidia germination of V. mali, causing mycelium malformation and the hyphal disintegrating in comparison to the control. The activity of pathogenically related enzymes that are secreted from V. mali and the expression level of gene of V. mali were significantly inhibited and downregulated by treatment with T6 fermentation. In addition, the lesion area and number of pycnidia of V. mali formed on the branches were significantly reduced after treatment with the T6 fermentation through the pathogenicity test on the detached branches. Our results indicate that the possible mechanism of T6 fermentation against V. mali occurs through inhibiting its growth and reproduction, the pathogenic enzyme activity, and its related gene expression.

18.
Insects ; 12(12)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34940141

ABSTRACT

Natural and anthropogenic changes have been altering many environmental factors. These include the amount of solar radiation reaching the Earth's surface. However, the effects of solar radiation on insect physiology have received little attention. As a pest for agriculture and horticulture, aphids are one of the most difficult pest groups to control due to their small size, high fecundity, and non-sexual reproduction. Study of the effects of UV-B radiation on aphid physiology may provide alternative control strategies in pest management. In this study, we examined the effects of UV-B radiation on protein and sugar contents, as well as the activities of protective enzymes, of the red and green morphs of the pea aphid over eight generations. The results indicated a significant interaction between UV-B radiation and aphid generations. Exposure of the pea aphids to UV-B radiation caused a significant decrease in the protein content and a significant increase in the glycogen and trehalose contents at each generation as measured in whole aphid bioassays. The enzyme activity of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) of the pea aphids changed significantly at each generation with UV-B treatments. The SOD activity increased over eight generations to the highest level at G7 generation. However, the enzyme activity of CAT first increased and then decreased with UV-B treatments, and POD mostly gradually decreased over the eight generations. Therefore, UV-B radiation is an environmental factor that could result in physiological changes of the pea aphid. Moreover, our study discovered that red and green aphids did not display a significant consistent difference in the response to the UV-B treatments. These results may prove useful in future studies especially for assessing their significance in the adaptation and management against UV-B radiation.

19.
Microb Pathog ; 161(Pt A): 105276, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34728371

ABSTRACT

Potato scab caused by pathogenic Streptomyces is a serious soil-borne disease on potato. In this study, a new Streptomyces strain 5A-1 was isolated from potato samples in China. Based on morphological characteristics, 16S rDNA gene sequence analyses, it was identified as Streptomyces griseoplanus (Streptacidiphilus griseoplanus), pathogenicity of which was measured by the methods of small potato chips, radish slices and potato pot trial inoculation. Moreover, the pathogenic genes txtAB and tomA from the Streptomyces pathogenicity island (PAI) were detected. Determination of biological characteristics showed that the optimal temperature for the growth of S. griseoplanus strain 5A-1 was 25 °C, the optimal light condition was darkness, the optimal pH value was 8.5 and the most preferred carbon source and nitrogen source is glucose and aspartate, respectively. To our knowledge, it is the first report for S. griseoplanus, as a new pathogen, to cause potato scab.


Subject(s)
Solanum tuberosum , China , Genomic Islands , Plant Diseases , Virulence
20.
Sci Rep ; 11(1): 19643, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34608198

ABSTRACT

Interactions between the decline of Mongolian pine woodlands and fungal communities and invasive pests in northeastern China are poorly understood. In this study, we investigated the fungal communities occurring in three tree samples: the woodwasp Sirex noctilio infested, healthy uninfested and unhealthy uninfested Mongolian pine trees. We analyzed the relationships of the Mongolian pine decline with fungal infection and woodwasp infestation. Twenty-six fungal species were identified from the sampled trees. Each tree sample harbored a fungal endophyte community with a unique structure. Pathogenic fungi richness was four times higher in infested and unhealthy un-infested trees compared to that in healthy uninfested trees. Sphaeropsis sapinea was the most dominant pathogenic fungus in the sampled Mongolian pine trees. The number of S. noctilio was higher than native bark beetles in the declining Mongolian pine trees. The invasion of the woodwasp appeared to be promoted by the fungal infection in the Mongolian pine trees. The incidence of S. noctilio infestation was higher in the fungi infected trees (83.22%) than those without infection (38.72%). S. sapinea population exhibited positive associations with within-tree colonization of S. noctilio and bark beetle. Collectively, these data indicate that the fungal disease may have caused as the initial reason the decline of the Mongolian pine trees, and also provided convenient conditions for the successful colonization of the woodwasp. The woodwasps attack the Mongolian pine trees infected by fungi and accelerated its decline.


Subject(s)
Ecosystem , Forests , Fungi , Pinus , Plant Diseases/microbiology , Plant Diseases/parasitology , Wasps , Animals , Biodiversity , China , Endophytes , Environmental Microbiology , Microbiota , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...