Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chim Acta ; 1279: 341819, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37827641

ABSTRACT

Cysteine (Cys), one of essential small-molecule-based biothiols in the human body, contributes to the regulation of redox reactions and is closely associated with many physiological and pathological metabolic processes. Herein, a novel fluorescent probe, hydroxyphenyl-conjugated benzothiazole (HBT-Cys) capable of detecting Cys was constructed, where acrylate served as the recognition group and hydroxyphenyl-linked benzothiazole acted as the fluorophore. The fluorescence of the probe was negligible in the absence of Cys, and an intense blue fluorescence was observed upon addition of Cys. The Cys-sensing mechanism could be ascribed to the Cys-involved hydrolysis reaction with acrylate, leading to light up the emission at 430 nm with about 80-fold enhancement. In addition, HBT-Cys exhibited a fast response time, remarkable selectivity and low detection limit. HBT-Cys also worked well in real-time monitoring of Cys in three different food samples (wolfberry, hawthorn, and red dates). Importantly, our probe had an excellent lysosomes-targeted ability, which was successfully employed to real-time visualize the fluctuation of both exogenous and endogenous Cys in living cells and zebrafish under lipopolysaccharide (LPS)-induced oxidative stress. Hopefully, the work shown here provides a potent candidate for the real-time tracking of Cys fluctuations in various biological samples.


Subject(s)
Cysteine , Fluorescent Dyes , Animals , Humans , Fluorescent Dyes/metabolism , Cysteine/metabolism , Lipopolysaccharides/pharmacology , HeLa Cells , Zebrafish , Lysosomes/metabolism , Oxidative Stress , Acrylates , Benzothiazoles/metabolism , Glutathione/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...