Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 3556, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38670956

ABSTRACT

Point defects in two-dimensional materials are of key interest for quantum information science. However, the parameter space of possible defects is immense, making the identification of high-performance quantum defects very challenging. Here, we perform high-throughput (HT) first-principles computational screening to search for promising quantum defects within WS2, which present localized levels in the band gap that can lead to bright optical transitions in the visible or telecom regime. Our computed database spans more than 700 charged defects formed through substitution on the tungsten or sulfur site. We found that sulfur substitutions enable the most promising quantum defects. We computationally identify the neutral cobalt substitution to sulfur (Co S 0 ) and fabricate it with scanning tunneling microscopy (STM). The Co S 0 electronic structure measured by STM agrees with first principles and showcases an attractive quantum defect. Our work shows how HT computational screening and nanoscale synthesis routes can be combined to design promising quantum defects.

2.
Opt Express ; 31(12): 20440-20448, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37381438

ABSTRACT

Scanning near-field optical microscopy (SNOM) is an important technique used to study the optical properties of material systems at the nanoscale. In previous work, we reported on the use of nanoimprinting to improve the reproducibility and throughput of near-field probes including complicated optical antenna structures such as the 'campanile' probe. However, precise control over the plasmonic gap size, which determines the near-field enhancement and spatial resolution, remains a challenge. Here, we present a novel approach to fabricating a sub-20 nm plasmonic gap in a near-field plasmonic probe through the controlled collapse of imprinted nanostructures using atomic layer deposition (ALD) coatings to define the gap width. The resulting ultranarrow gap at the apex of the probe provides a strong polarization-sensitive near-field optical response, which results in an enhancement of the optical transmission in a broad wavelength range from 620 to 820 nm, enabling tip-enhanced photoluminescence (TEPL) mapping of 2-dimensional (2D) materials. We demonstrate the potential of this near-field probe by mapping a 2D exciton coupled to a linearly polarized plasmonic resonance with below 30 nm spatial resolution. This work proposes a novel approach for integrating a plasmonic antenna at the apex of the near-field probe, paving the way for the fundamental study of light-matter interactions at the nanoscale.

3.
Nano Lett ; 23(11): 4901-4907, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37262350

ABSTRACT

Tip-enhanced photoluminescence (TRPL) is a powerful technique for spatially and spectrally probing local optical properties of 2-dimensional (2D) materials that are modulated by the local heterogeneities, revealing inaccessible dark states due to bright state overlap in conventional far-field microscopy at room temperature. While scattering-type near-field probes have shown the potential to selectively enhance and reveal dark exciton emission, their technical complexity and sensitivity can pose challenges under certain experimental conditions. Here, we present a highly reproducible and easy-to-fabricate near-field probe based on nanoimprint lithography and fiber-optic excitation and collection. The novel near-field measurement configuration provides an ∼3 orders of magnitude out-of-plane Purcell enhancement, diffraction-limited excitation spot, and subdiffraction hyperspectral imaging resolution (below 50 nm) of dark exciton emission. The effectiveness of this high spatial XD mapping technique was then demonstrated through reproducible hyperspectral mapping of oxidized sites and bubble areas.

4.
Rev Sci Instrum ; 94(3): 033902, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-37012819

ABSTRACT

The ability to correlate optical hyperspectral mapping and high resolution topographic imaging is critically important to gain deep insight into the structure-function relationship of nanomaterial systems. Scanning near-field optical microscopy can achieve this goal, but at the cost of significant effort in probe fabrication and experimental expertise. To overcome these two limitations, we have developed a low-cost and high-throughput nanoimprinting technique to integrate a sharp pyramid structure on the end facet of a single-mode fiber that can be scanned with a simple tuning-fork technique. The nanoimprinted pyramid has two main features: (1) a large taper angle (∼70°), which determines the far-field confinement at the tip, resulting in a spatial resolution of 275 nm, an effective numerical aperture of 1.06, and (2) a sharp apex with a radius of curvature of ∼20 nm, which enables high resolution topographic imaging. Optical performance is demonstrated through evanescent field distribution mapping of a plasmonic nanogroove sample, followed by hyperspectral photoluminescence mapping of nanocrystals using a fiber-in-fiber-out light coupling mode. Through comparative photoluminescence mapping on 2D monolayers, we also show a threefold improvement in spatial resolution over chemically etched fibers. These results show that the bare nanoimprinted near-field probes provide simple access to spectromicroscopy correlated with high resolution topographic mapping and have the potential to advance reproducible fiber-tip-based scanning near-field microscopy.

5.
Sci Rep ; 10(1): 4237, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32144312

ABSTRACT

Zinc oxide (ZnO) is a stable, direct bandgap semiconductor emitting in the UV with a multitude of technical applications. It is well known that ZnO emission can be shifted into the green for visible light applications through the introduction of defects. However, generating consistent and efficient green emission through this process is challenging, particularly given that the chemical or atomic origin of the green emission in ZnO is still under debate. In this work we present a new method, for which we coin term desulfurization, for creating green emitting ZnO with significantly enhanced quantum efficiency. Solution grown ZnO nanowires are partially converted to ZnS, then desulfurized back to ZnO, resulting in a highly controlled concentration of oxygen defects as determined by X-ray photoelectron spectroscopy and electron paramagnetic resonance. Using this controlled placement of oxygen vacancies we observe a greater than 40-fold enhancement of integrated emission intensity and explore the nature of this enhancement through low temperature photoluminescence experiments.

7.
Nanoscale Adv ; 2(11): 5288-5295, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-36132032

ABSTRACT

ZnO is a highly promising, multifunctional nanomaterial having various versatile applications in the fields of sensors, optoelectronics, photovoltaics, photocatalysts and water purification. However, the real challenge lies in producing large scale, well-aligned, highly reproducible ZnO nanowires (NWs) using low cost techniques. This large-scale production of ZnO NWs has stunted the development and practical usage of these NWs in fast rising fields such as photocatalysis or in photovoltaic applications. The present article shows an effective, simple approach for the uniform, aligned growth of ZnO NWs on entire silicon wafers (sizes 3 or 4 inches), using a low-temperature Chemical Bath Deposition (CBD) technique. In addition to this, a systematic study of the substrate size dependent growth of NWs has been conducted to better understand the effect of the limitation in the deposition rate of Zn2+ ions on the growth of NWs. The growth rate of ZnO NWs is seen to have a strong relationship with the substrate size. Also, the loading efficiency of the Zn2+ ions is higher in ZnO NWs grown on a 3-inch silicon wafer in comparison to those grown on a small piece. An in-depth time dependent growth study conducted on entire 3-inch wafers to track the morphological evolution (length, diameter and number of the NWs) reveals that the growth rate of the length of the NWs reaches a saturation state in a short time span of 20 min. Assessment of the overall homogeneity of the NWs grown on the 3-inch wafer and simultaneous growth on two entire 4-inch silicon wafers has also been demonstrated in this article. This demonstration of large-scale, well-aligned controllable, aligned growth of ZnO NWs on entire silicon wafers is a first step towards NW based devices especially for applications such as photovoltaic, water purification, photocatalysis or biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...