Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Cell Biol ; 103(2): 151426, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805800

ABSTRACT

Cell-cell mechanotransduction regulates tissue development and homeostasis. α-catenin, the core component of adherens junctions, functions as a tension sensor and transducer by recruiting vinculin and transducing signals that influence cell behaviors. α-catenin/vinculin complex-mediated mechanotransduction regulates multiple pathways, such as Hippo pathway. However, their associations with the α-catenin-based tension sensors at cell junctions are still not fully addressed. Here, we uncovered the TRIP6/LATS1 complex co-localizes with α-catenin/vinculin at both bicellular junctions (BCJs) and tricellular junctions (TCJs). The localization of TRIP6/LATS1 complex to both TCJs and BCJs requires ROCK1 and α-catenin. Treatment by cytochalasin B, Y-27632 and blebbistatin all impaired the BCJ and TCJ junctional localization of TRIP6/LATS1, indicating that the junctional localization of TRIP6/LATS1 is mechanosensitive. The α-catenin/vinculin/TRIP6/LATS1 complex strongly localized to TCJs and exhibited a discontinuous button-like pattern on BCJs. Additionally, we developed and validated an α-catenin/vinculin BiFC-based mechanosensor that co-localizes with TRIP6/LATS1 at BCJs and TCJs. The mechanosensor exhibited a discontinuous distribution and motile signals at BCJs. Overall, our study revealed that TRIP6 and LATS1 are novel compositions of the tension sensor, together with the core complex of α-catenin/vinculin, at both the BCJs and TCJs.


Subject(s)
Protein Serine-Threonine Kinases , Vinculin , alpha Catenin , alpha Catenin/metabolism , Humans , Protein Serine-Threonine Kinases/metabolism , Vinculin/metabolism , Mechanotransduction, Cellular , Adaptor Proteins, Signal Transducing/metabolism , Intercellular Junctions/metabolism , HEK293 Cells , rho-Associated Kinases/metabolism , Transcription Factors/metabolism
2.
Inorg Chem ; 60(15): 10880-10884, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34288645

ABSTRACT

It is known that as the FeAs4 tetrahedron in the Fe-based superconductor is close to the regular tetrahedron, critical temperature (Tc) can be greatly increased. Recently, a Co-based superconductor of LaCoSi (4 K) with "111" structure was found. In this work, we improve the Tc of LaCoSi through structural regulation. Tc can be increased by the chemical substitution of Co by Fe, while the superconductivity is suppressed by the Ni substitution. The combined analysis of neutron and synchrotron X-ray powder diffractions reveals that the change of the Si-Co-Si bond angles of the CoSi4 tetrahedron is possibly responsible for the determination of superconducting properties. The Fe chemical substitution is favorable for the formation of the regular tetrahedron of CoSi4. The present new Co-based superconductor of LaCoSi provides a possible method to enhance the superconductivity performance of the Co-based superconductors via controlling Co-based tetrahedra similar to those well established in the Fe-based superconductors.

3.
Inorg Chem ; 60(9): 6157-6161, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33885292

ABSTRACT

It is known that few Co-based superconducting compounds have been found compared with their Fe- or Ni-based counterparts. In this study, we have found superconductivity of 4 K in the LaCoSi compound for the first time. The combined analysis of neutron and synchrotron X-ray powder diffractions reveals that LaCoSi exhibits an isostructure with the known Fe-based LiFeAs superconductor, which is the first "111" Co-based superconductor. First-principles calculation shows that LaCoSi presents a quasi-two-dimensional band structure that is also similar to that of LiFeAs. The small structural distortion may be more conducive to the emergence of superconductivity in the LaCoSi compound, which provides a direction for finding new Co-based superconducting compounds.

SELECTION OF CITATIONS
SEARCH DETAIL
...