Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 448, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200045

ABSTRACT

The state-of-the-art alkaline hydrogen evolution catalyst of united ruthenium single atoms and small ruthenium nanoparticles has sparked considerable research interest. However, it remains a serious problem that hydrogen evolution primarily proceeds on the less active ruthenium single atoms instead of the more efficient small ruthenium nanoparticles in the catalyst, hence largely falling short of its full activity potential. Here, we report that by combining highly oxophilic cerium single atoms and fully-exposed ruthenium nanoclusters on a nitrogen functionalized carbon support, the alkaline hydrogen evolution centers are facilely reversed to the more active ruthenium nanoclusters driven by the strong oxophilicity of cerium, which significantly improves the hydrogen evolution activity of the catalyst with its mass activity up to -10.1 A mg-1 at -0.05 V. This finding is expected to shed new light on developing more efficient alkaline hydrogen evolution catalyst by rational regulation of the active centers for hydrogen evolution.

2.
J Colloid Interface Sci ; 659: 886-894, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38219307

ABSTRACT

Development of high energy density lithium-metal batteries (LMBs) is markedly hindered by the interfacial instability on lithium-metal anode side. Solid-electrolyte interphase (SEI) is a fundamental factor to regulate dendrite growth and enhance the stability of lithium-metal anodes. Here, trithiocyanuric acid, a triazine derivative with sulfhydryl groups, is used as an efficient promoter to favor the construction of a robust artificial SEI layer on the lithium metal surface, which greatly benefits the stability and efficiency of LMBs. With the assistance of trithiocyanuric acid facilely introduced on the Li surface via a one-step solution route, a highly uniform artificial SEI layer rich in Li2S and Li3N is formed, which efficiently facilitates uniform lithium deposition and suppresses lithium dendrite growth. Remarkably, the Li|Li cell displays stable lithium plating/stripping cycling over 800 h at 0.5 mA cm-2, 1 mAh cm-2, and the Li|LFP cells exhibit prolonged lifespan over 700 cycles at 3 C and superior rate performance from 2 to 20 C. This work provides a facile design strategy for constructing a superb artificial SEI layer for high-performance LMBs.

3.
J Am Chem Soc ; 145(39): 21273-21283, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37729633

ABSTRACT

Introducing a second metal species into atomically dispersed metal-nitrogen-carbon (M-N-C) catalysts to construct diatomic sites (DASs) is an effective strategy to elevate their activities and stabilities. However, the common pyrolysis-based method usually leads to substantial uncertainty for the formation of DASs, and the precise identification of the resulting DASs is also rather difficult. In this regard, we developed a two-step specific-adsorption strategy (pyrolysis-free) and constructed a DAS catalyst featuring FeCo "molecular heterostructures" (FeCo-MHs). In order to rule out the possibility of the two apparently neighboring (in the electron microscopy image) Fe/Co atoms being dispersed respectively on the top/bottom surfaces of the carbon support and thus forming "false" MHs, we conducted in situ rotation (by 8°, far above the critical angle of 5.3°) and directly identified the individual FeCo-MHs. The formation of FeCo-MHs could modulate the magnetic moments of the metal centers and increase the ratio of low-spin Fe(II)-N4 moiety; thus the intrinsic activity could be optimized at the apex of the volcano-plot (a relationship as a function of magnetic moments of metal-phthalocyanine complexes and catalytic activities). The FeCo-MHs catalyst displays an exceptional ORR activity (E1/2 = 0.95 V) and could be used to construct high-performance cathodes for hydroxide exchange membrane fuel cells and zinc-air batteries.

4.
Materials (Basel) ; 15(20)2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36295337

ABSTRACT

The effect of beam oscillating amplitude on the microstructure and performance of AZ80 Mg alloy cladded with Al-Mg alloy coating by laser-arc hybrid welding was studied. The penetration depth decreases significantly while welds are widened because of the increase in the oscillating area of a laser beam. Alloy segregation and keyhole-induced porosity can be suppressed by the laser beam oscillation. With the increase in the oscillating amplitude, the Al distribution becomes uniform in the weld seam because of the rapid and fierce stirring by the oscillating laser. However, the diluting of the cladded Al alloy restrains the formation of the brittle Mg17Al12 phase, and then causes the weakening of hardness and wear resistance of the cladded layer. Considered comprehensively, the optimized oscillating amplitude was 1 mm, which can produce the weld seam with good appearance, fewer segregation and porosity defects, and acceptable hardness and wear resistance.

5.
Chem Sci ; 12(9): 3245-3252, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-34164093

ABSTRACT

Electronic interactions can radically enhance the performance of supported metal catalysts and are critical for fundamentally understanding the nature of catalysts. However, at the microscopic level, the details of such interactions tuning the electronic properties of the sites on the metal particle's surface and metal-support interface remain obscure. Herein, we found polarized electronic metal-support interaction (pEMSI) in oxide-supported Pd nanoparticles (NPs) describing the enhanced accumulation of electrons at the surface of NPs (superficial Pd δ-) with positive Pd atoms distributed on the interface (interfacial Pd δ+). More superficial Pd δ- species mean stronger pEMSI resulting from the synergistic effect of moderate Pd-oxide interaction, high structural fluxionality and electron transport activity of Pd NPs. The surface Pd δ- species are responsible for improved catalytic performance for H2 evolution from metal hydrides and formates. These extensive insights into the nature of supported-metal NPs may open new avenues for regulating a metal particle's electronic structure precisely and exploiting high-performance catalysts.

6.
ACS Appl Mater Interfaces ; 12(36): 40415-40425, 2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32809790

ABSTRACT

The inferior stability of bifunctional oxygen electrocatalysts in the air cathode is one of the main obstacles that impedes the commercialization of zinc-air batteries (ZABs). This work describes a self-assembly technique combined with subsequent calcination to prepare a bifunctional oxygen electrocatalyst of graphite nanoarrays-confined Fe and Co single-atoms within graphene sponges (FeCo-NGS). Specifically, graphene sponges overspread with graphite nanoarrays as a structure regulation, which can prevent the metal single-atoms from aggregating and accelerate the mass/electron transfer, provides a guarantee for the long-term operation. Furthermore, M-N4 (M = Fe/Co) as the intrinsic activity regulation can effectively drive the heterogeneous oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic processes. Thanks to the rationally designed regulations, FeCo-NGS shows both extraordinary electrocatalytic activity for ORR and OER, even outperforming commercial Pt/C and IrO2. Remarkably, ZABs with FeCo-NGS air cathode demonstrate a record-breaking cycle lifetime of more than 1500 h (over 9000 cycles) at 10 mA cm-2 with a small charge-discharge gap.

7.
Chem Sci ; 10(2): 614-619, 2019 Jan 14.
Article in English | MEDLINE | ID: mdl-30746103

ABSTRACT

Multi-shelled hollow structured materials featuring large void volumes and high specific surface areas are very promising for a variety of applications. However, controllable synthesis of multi-shelled hollow structured intermetallic compounds remains a formidable challenge due to the high annealing temperature commonly required for the formation of intermetallic phases. Here, a topological self-template strategy was developed to solve this problem. Using this strategy, we prepared well-defined multi-shelled intermetallic Ni3Ga hollow microspheres (Ni3Ga-MIHMs) as disclosed by the HAADF-STEM, HRTEM, and EDS characterizations, and the BET specific surface areas of them measured as much as 153.4 m2 g-1. XRD and EXAFS spectral characterizations revealed the atomically ordered intermetallic phase nature of the Ni3Ga-MIHMs. The selective hydrogenation of acetylene catalytic evaluation results further demonstrated excellent catalytic properties of the Ni3Ga-MIHMs, which results from the more energetically facile reaction pathway for acetylene hydrogenation and ethylene desorption over it as revealed by DFT calculations. Besides, this strategy is also extendable to synthesize other multi-shelled intermetallic Ni3Sn4 hollow microspheres, and is expected to open up new opportunities for rational design and preparation of novel structured and highly efficient intermetallics.

8.
Adv Mater ; : e1801878, 2018 Jul 01.
Article in English | MEDLINE | ID: mdl-29962046

ABSTRACT

Controllable synthesis of ultrasmall atomically ordered intermetallic nanoparticles is a challenging task, owing to the high temperature commonly required for the formation of intermetallic phases. Here, a metal-organic framework (MOF)-confined co-reduction strategy is developed for the preparation of sub-2 nm intermetallic PdZn nanoparticles, by employing the well-defined porous structures of calcinated ZIF-8 (ZIF-8C) and an in situ co-reduction therein. HAADF-STEM, HRTEM, and EDS characterizations reveal the homogeneous dispersion of these sub-2 nm intermetallic PdZn nanoparticles within the ZIF-8C frameworks. XRD, XPS, and EXAFS measurements further confirm the atomically ordered intermetallic phase nature of these sub-2 nm PdZn nanoparticles. Selective hydrogenation of acetylene evaluation results show the excellent catalytic properties of the sub-2 nm intermetallic PdZn, which result from the energetically more favorable path for acetylene hydrogenation and ethylene desorption over the ultrasmall particles than over larger-sized intermetallic PdZn as revealed by density functional theory (DFT) calculations. Moreover, this protocol is also extendable for the preparation of sub-2 nm intermetallic PtZn nanoparticles and is expected to provide a novel methodology in synthesizing ultrasmall atomically ordered intermetallic nanomaterials by rationally functionalizing MOFs.

9.
Nanotechnology ; 29(40): 405705, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30015623

ABSTRACT

Developing efficient catalysts to accelerate the rate of oxygen evolution reaction (OER) is critical for photocatalytic water-splitting. In this work, metallic Ir, IrOx(OH)y, and core-shell Ir@IrOx(OH)y were synthesized and employed as OER catalysts for photocatalytic water oxidation. It was found that the Ir@IrOx(OH)y core-shell heterostructure catalyst showed the best photocatalytic performance among these three catalysts, with the oxygen evolution rate as high as 59.63 mmol g-1 h-1. Detailed investigations revealed that the excellent photocatalytic activity of Ir@IrOx(OH)y could be attributed to both the outstanding intrinsic activity of IrOx(OH)y shell and the efficient electron transfer between the photosensitizer and catalyst.

10.
Nanotechnology ; 29(21): 215402, 2018 May 25.
Article in English | MEDLINE | ID: mdl-29513263

ABSTRACT

Two-dimensional (2D) nanosheets of atomic thickness have attracted extensive research interest recently. In this work, atomically thin (0.7 nm) flat CdS (F-CdS) nanosheets of several tens of micrometers in lateral size were synthesized by a solvent-thermal method. The as-synthesized F-CdS could maintain flat morphology well in solution, while irreversible wrinkles could be generated after drying, forming wrinkled CdS (W-CdS) samples. It was revealed that the formation of wrinkles could reduce light absorbance, narrow the band gap, move down the conduction band position and accelerate electron-hole recombination. As photocatalysts, the F-CdS achieved a photocatalytic H2 evolution rate of 138.7 mmol g-1 h-1 without any co-catalyst under visible light, which was much higher than that of the W-CdS sample (with an H2 evolution rate of only 52.8 mmol g-1 h-1). This work demonstrates that great attention should be paid to the wrinkles in 2D materials as photocatalysts.

11.
J Colloid Interface Sci ; 502: 16-23, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28475938

ABSTRACT

Lithium-ion battery (LIB) is a revolutionary step in the electric energy storage technology for making green environment. In the present communication, a LIB anode material was constructed by using graphene/polyaniline/CuS nanocomposite (GR/PANI/CuS NC) as a high-performance electrode. Initially, pure covellite CuS nanoplates (NPs) of the hexagonal structure were synthesized by hydrothermal route and then GR/PANI/CuS NC was fabricated by in-situ polymerization of aniline in the presence of CuS NPs and graphene nanosheets (GR NSs) as host matrix. GR/PANI/CuS NC-based LIB has shown the superior reversible current capacity of 1255mAhg-1, a high cycling stability with more than 99% coulombic efficiency over 250 cycles even at a high current density of 5Ag-1, low volume expansion, and excellent power capabilities. Galvanostatic charge/discharge tests and cyclic voltammetry analysis were used to investigate electrochemical properties. The electrochemical test proves that GR/PANI/CuS NC is promising anode material for LIB. The crystal phases and purity of the GR/PANI/CuS NC were confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) were employed to examine the morphology, size, chemical composition, and phase structure of the synthesized GR/PANI/CuS NC.

12.
Nanoscale ; 9(20): 6638-6642, 2017 May 25.
Article in English | MEDLINE | ID: mdl-28497825

ABSTRACT

Here we report for the first time that the H2 bubbles generated by photocatalytic water splitting are effective in the layer-by-layer exfoliation of MoS2 nanocrystals (NCs) into few layers. The as-obtained few layers can be in situ assembled with CdS nanosheets (NSs) into van der Waals heterostructures (vdWHs) of few-layered MoS2/CdS NSs which, in turn, are effective in charge separation and transfer, leading to enhanced photocatalytic H2 production activity. The few-layered MoS2/CdS vdWHs exhibited a H2 evolution rate of 140 mmol g(CdS)-1 h-1 and achieved an apparent quantum yield of 66% at 420 nm.

13.
Int J Environ Res Public Health ; 12(9): 10806-19, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26404340

ABSTRACT

Cerium oxide nanoparticles (nano-CeO2) have been reported to cause damage and apoptosis in human primary hepatocytes. Here, we compared the toxicity of three types of nano-CeO2 with different nanocrystal morphologies (cube-, octahedron-, and rod-like crystals) in human hepatocellular carcinoma cells (HepG2). The cells were treated with the nano-CeO2 at various concentrations (6.25, 12.5, 25, 50, 100 µg/mL). The crystal structure, size and morphology of nano-CeO2 were investigated by X-ray diffractometry and transmission electron microscopy. The specific surface area was detected using the Brunauer, Emmet and Teller method. The cellular morphological and internal structure were observed by microscopy; apoptotic alterations were measured using flow cytometry; nuclear DNA, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) and glutathione (GSH) in HepG2 cells were measured using high content screening technology. The scavenging ability of hydroxyl free radicals and the redox properties of the nano-CeO2 were measured by square-wave voltammetry and temperature-programmed-reduction methods. All three types of nano-CeO2 entered the HepG2 cells, localized in the lysosome and cytoplasm, altered cellular shape, and caused cytotoxicity. The nano-CeO2 with smaller specific surface areas induced more apoptosis, caused an increase in MMP, ROS and GSH, and lowered the cell's ability to scavenge hydroxyl free radicals and antioxidants. In this work, our data demonstrated that compared with cube-like and octahedron-like nano-CeO2, the rod-like nano-CeO2 has lowest toxicity to HepG2 cells owing to its larger specific surface areas.


Subject(s)
Cerium/toxicity , Antioxidants/pharmacology , Apoptosis/drug effects , Cerium/chemistry , Electron Probe Microanalysis , Glutathione/metabolism , Hep G2 Cells , Humans , Microscopy, Electron, Transmission , Nanoparticles/chemistry , Nanoparticles/toxicity , Oxidation-Reduction , Reactive Oxygen Species/chemistry
14.
Environ Sci Technol ; 49(14): 8675-82, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26120873

ABSTRACT

To eliminate indoor formaldehyde (HCHO) pollution, Pd/CeO2 catalysts with different morphologies of ceria support were employed. The palladium nanoparticles loaded on {100}-faceted CeO2 nanocubes exhibited much higher activity than those loaded on {111}-faceted ceria nanooctahedrons and nanorods (enclosed by {100} and {111} facets). The HCHO could be fully converted into CO2 over the Pd/CeO2 nanocubes at a GHSV of 10,000 h(-1) and a HCHO inlet concentration of 600 ppm at ambient temperature. The prepared catalysts were characterized by a series of techniques. The HRTEM, ICP-MS and XRD results confirmed the exposed facets of the ceria and the sizes (1-2 nm) of the palladium nanoparticles with loading amounts close to 1%. According to the Pd 3d XPS and H2-TPR results, the status of the Pd-species was dependent on the morphologies of the supports. The {100} facets of ceria could maintain the metallic Pd species rather than the {111} facets, which promoted HCHO catalytic combustion. The Raman and O 1s XPS results revealed that the nanorods with more defect sites and oxygen vacancies were responsible for the easy oxidation of the Pd-species and low catalytic activity.


Subject(s)
Cerium/chemistry , Formaldehyde/chemistry , Nanoparticles/chemistry , Palladium/chemistry , Air Pollution, Indoor , Carbon Dioxide/chemistry , Catalysis , Microscopy, Electron, Transmission , Nanotubes/chemistry , Oxidation-Reduction , Oxygen/chemistry , X-Ray Diffraction
15.
ACS Appl Mater Interfaces ; 7(12): 6745-53, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25762095

ABSTRACT

Two types of monolith high-porosity supermacroporous polystyrene materials had been controlled synthesized from water-in-oil Pickering emulsions. The first type, closed-cell high-porosity (up to 91%) supermacroporous (ca. 500 µm) polystyrene materials (CPPs) was prepared by employing amphiphilic carbonaceous microspheres (CMs) as high internal phase emulsion stabilizer without any inorganic salts or further modifying the wettability of the particles. The second type, hierarchical porous polystyrene materials with highly interconnected macropores (IPPs), was constructed from emulsions stabilized simultaneously by CM particles and a little amount of surfactants. Both types of these monolith porous polystyrene materials possessed excellent mechanical strength. The CPPs were used as absorbents for oil-water separation and high absorption capacity, and absorption rate for oils were realized, which was attributed to their porosity structure and the swelling property of the polystyrene, while the IPPs were highly permeable for gases due to their interconnected macropores.

16.
Chemistry ; 18(35): 11115-22, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-22807390

ABSTRACT

Cerium oxide (CeO(2)) nanoparticles display excellent antioxidant properties by scavenging free radicals. However, some studies have indicated that they can cause an adverse response by generating reactive oxygen species (ROS). Hence, it is important to clarify the factors that affect the oxidant/antioxidant activities of CeO(2) nanoparticles. In this work, we report the effects of different buffer anions on the antioxidant activity of CeO(2) nanoparticles. Considering the main anions present in the body, Tris-HCl, sulfate, and phosphate buffer solutions have been used to evaluate the antioxidant activity of CeO(2) nanoparticles by studying their DNA protective effect. The results show that CeO(2) nanoparticles can protect DNA from damage in Tris-HCl and sulfate systems, but not in phosphate buffer solution (PBS) systems. The mechanism of action has been explored: cerium phosphate is formed on the surface of the nanoparticles, which interferes with the redox cycling between Ce(3+) and Ce(4+). As a result, the antioxidant activity of CeO(2) nanoparticles is greatly affected by the external environment, especially the anions. These results may provide guidance for the further practical application of CeO(2) nanoparticles.


Subject(s)
Cerium/chemistry , DNA/chemistry , Nanoparticles/chemistry , Phosphates/chemistry , Reactive Oxygen Species/chemistry , Animals , Anions , Antioxidants/chemistry , Cattle , Cerium/pharmacology , DNA Fragmentation/drug effects , Electrophoresis, Agar Gel , Hydrochloric Acid/chemistry , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure , Oxidation-Reduction , Sulfates/chemistry , Tromethamine/chemistry , X-Ray Diffraction
17.
Angew Chem Int Ed Engl ; 51(3): 602-13, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22134985

ABSTRACT

Using bottom-up chemistry techniques, the composition, size, and shape in particular can now be controlled uniformly for each and every nanocrystal (NC). Research into shape-controlled NCs have shown that the catalytic properties of a material are sensitive not only to the size but also to the shape of the NCs as a consequence of well-defined facets. These findings are of great importance for modern heterogeneous catalysis research. First, a rational synthesis of catalysts might be achieved, since desired activity and selectivity would be acquired by simply tuning the shape, that is, the exposed crystal facets, of a NC catalyst. Second, shape-controlled NCs are relatively simple systems, in contrast to traditional complex solids, suggesting that they may serve as novel model catalysts to bridge the gap between model surfaces and real catalysts.

18.
Chem Commun (Camb) ; 47(43): 11903-5, 2011 Nov 21.
Article in English | MEDLINE | ID: mdl-21976019

ABSTRACT

Multifunctional amphiphilic hollow carbonaceous spheres assembled into Pickering emulsions exhibit reversible pH-dependent phase-transfer behavior and can efficiently catalyze water/oil biphasic reactions, facilitating the recycling of the catalysts and separation of the products.

19.
Biosens Bioelectron ; 26(5): 2473-7, 2011 Jan 15.
Article in English | MEDLINE | ID: mdl-21094596

ABSTRACT

Gold nanoparticles (Au-NPs) are usually used to amplify surface plasmon resonance (SPR) signals, however, the serious nonspecific adsorption has largely limited their practical applications. Here, we developed a novel Au-NPs enhanced biosensor without the effect of nonspecific adsorption: cutting Au-NPs off from the biosensor surface by RsaI endonuclease. In order to further improve the sensitivity, the probe DNA was designed specially. After the cleavage reaction, the residual probe DNA formed hairpin structure, which also resulted in a great change in SPR dip shift. Then, with the coaction of Au-NPs and conformation change of probe DNA, the SPR signal was amplified greatly. Using this method, we monitored the process of DNA cleavage in real-time and achieved a detection level of 5×10(-8) M. Moreover, the result of X-ray photoelectron spectroscopy (XPS) experiment further confirmed that large nonspecific adsorption existed. However, because SPR recorded a process in which the Au-NPs were cut off, the serious nonspecific adsorption did not affect the experimental result.


Subject(s)
Biosensing Techniques/instrumentation , DNA/chemistry , DNA/genetics , Gold/chemistry , In Situ Hybridization/instrumentation , Nanoparticles/chemistry , Surface Plasmon Resonance/instrumentation , Adsorption , Equipment Design , Equipment Failure Analysis , Inverted Repeat Sequences , Nanoparticles/ultrastructure
20.
J Nanosci Nanotechnol ; 10(12): 8658-62, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21121379

ABSTRACT

Although the presence of manufactured nanoparticles in the aquatic environment is still largely undocumented, their release could certainly occur in the future, particularly via municipal treatment plant effluents of cities supporting nano-industries. To get an initial estimate of the environmental behavior of nanomaterials, we investigated the distribution and accumulation of ceria nanoparticles in simulated aquatic ecosystems which included aquatic plant, shellfish, fish, water, and sediment using a radiotracer technique. Radioactive ceria (141CeO2) nanoparticles with a diameter of ca. 7 nm were synthesized by a precipitation method and added to the simulated aquatic ecosystems. The results indicate that the concentration of ceria nanoparticles in water decreased to a steady-state value after 3 days; meanwhile, the concentrations of ceria nanoparticles in the aquatic plant and sediment increased to their highest values. The distribution and accumulation characteristics of ceria nanoparticles in various aquatic organisms were different. Ceratophyllum demersum showed a high ability of accumulation of ceria nanoparticles from water.


Subject(s)
Aquatic Organisms/metabolism , Cerium/pharmacokinetics , Cobalt Radioisotopes/pharmacokinetics , Geologic Sediments/chemistry , Metal Nanoparticles/chemistry , Aquatic Organisms/chemistry , Biological Availability , Cerium/chemistry , Cobalt Radioisotopes/chemistry , Ecosystem , Microscopy, Electron, Transmission , Models, Biological , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...