Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 321: 117569, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38086513

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease among old adults. As a traditional Chinese medicine, the herbal decoction Tian-Si-Yin consists of Morinda officinalis How. and Cuscuta chinensis Lam., which has been widely used to nourish kidney. Interestingly, Tian-Si-Yin has also been used to treat dementia, depression and other neurological conditions. However, its therapeutic potential for neurodegenerative diseases such as AD and the underlying mechanisms remain unclear. AIM OF THE STUDY: To evaluate the therapeutic effect of the herbal formula Tian-Si-Yin against AD and to explore the underlying mechanisms. MATERIALS AND METHODS: The N2a cells treated with amyloid ß (Aß) peptide or overexpressing amyloid precursor protein (APP) were used to establish cellular models of AD. The in vivo anti-AD effects were evaluated by using Caenorhabditis elegans and 3 × Tg-AD mouse models. Tian-Si-Yin was orally administered to the mice for 8 weeks at a dose of 10, 15 or 20 mg/kg/day, respectively. Its protective role on memory deficits of mice was examined using the Morris water maze and fear conditioning tests. Network pharmacology, proteomic analysis and ultra-high performance liquid chromatography-mass spectrometry/mass spectrometry (UHPLC-MS/MS) were used to explore the underlying molecular mechanisms, which were further investigated by Western blotting and immunohistochemistry. RESULTS: Tian-Si-Yin was shown to improve cell viability of Aß-treated N2a cells and APP-expressing N2a-APP cells. Tian-Si-Yin was also found to reduce ROS level and extend lifespan of transgenic AD-like C. elegans model. Oral administration of Tian-Si-Yin at medium dose was able to effectively rescue memory impairment in 3 × Tg mice. Tian-Si-Yin was further shown to suppress neuroinflammation by inhibition of glia cell activation and downregulation of inflammatory cytokines, diminishing tau phosphoralytion and Aß deposition in the mice. Using UHPLC-MS/MS and network pharmacology technologies, 17 phytochemicals from 68 components of Tian-Si-Yin were identified as potential anti-AD components. MAPK1, BRAF, TTR and Fyn were identified as anti-AD targets of Tian-Si-Yin from network pharmacology and mass spectrum. CONCLUSIONS: This study has established the protective effect of Tian-Si-Yin against AD and demonstrates that Tian-Si-Yin is capable of improving Aß level, tau pathology and synaptic disorder by regulating inflammatory response.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Neuroprotective Agents , Mice , Animals , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroinflammatory Diseases , Neurodegenerative Diseases/drug therapy , Caenorhabditis elegans/metabolism , Proteomics , Tandem Mass Spectrometry , Mice, Transgenic , Maze Learning , Amyloid beta-Protein Precursor/metabolism , Memory Disorders/drug therapy , Disease Models, Animal
2.
Sci Adv ; 9(16): eabq7105, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37083538

ABSTRACT

The neuron-glia cross-talk is critical to brain homeostasis and is particularly affected by neurodegenerative diseases. How neurons manipulate the neuron-astrocyte interaction under pathological conditions, such as hyperphosphorylated tau, a pathological hallmark in Alzheimer's disease (AD), remains elusive. In this study, we identified excessively elevated neuronal expression of adenosine receptor 1 (Adora1 or A1R) in 3×Tg mice, MAPT P301L (rTg4510) mice, patients with AD, and patient-derived neurons. The up-regulation of A1R was found to be tau pathology dependent and posttranscriptionally regulated by Mef2c via miR-133a-3p. Rebuilding the miR-133a-3p/A1R signal effectively rescued synaptic and memory impairments in AD mice. Furthermore, neuronal A1R promoted the release of lipocalin 2 (Lcn2) and resulted in astrocyte activation. Last, silencing neuronal Lcn2 in AD mice ameliorated astrocyte activation and restored synaptic plasticity and learning/memory. Our findings reveal that the tau pathology remodels neuron-glial cross-talk and promotes neurodegenerative progression. Approaches targeting A1R and modulating this signaling pathway might be a potential therapeutic strategy for AD.


Subject(s)
Alzheimer Disease , MicroRNAs , Animals , Mice , Alzheimer Disease/metabolism , Astrocytes/metabolism , Disease Models, Animal , Mice, Transgenic , MicroRNAs/metabolism , Neurons/metabolism , tau Proteins/genetics , tau Proteins/metabolism , Humans
3.
Front Cell Dev Biol ; 9: 667412, 2021.
Article in English | MEDLINE | ID: mdl-33898468

ABSTRACT

Cholinergic degeneration is one of the key pathological hallmarks of Alzheimer's disease (AD), a condition that is characterized by synaptic disorders and memory impairments. Nerve growth factor (NGF) is secreted in brain regions that receive projections from the basal forebrain cholinergic neurons. The trophic effects of NGF rely on the appropriate maturation of NGF from its precursor, proNGF. The ratio of proNGF/NGF is known to be increased in patients with AD; however, the mechanisms that underlie this observation have yet to be elucidated. Here, we demonstrated that levels of miR-144-3p are increased in the hippocampi and the medial prefrontal cortex of an APP/PS1 mouse model of AD. These mice also exhibited cholinergic degeneration (including the loss of cholinergic fibers, the repression of choline acetyltransferase (ChAT) activity, the reduction of cholinergic neurons, and an increased number of dystrophic neurites) and synaptic/memory deficits. The elevated expression of miR-144-3p specifically targets the mRNA of tissue plasminogen activator (tPA) and reduces the expression of tPA, thus resulting in the abnormal maturation of NGF. The administration of miR-144-3p fully replicated the cholinergic degeneration and synaptic/memory deficits observed in the APP/PS1 mice. The injection of an antagomir of miR-144-3p into the hippocampi partially rescued cholinergic degeneration and synaptic/memory impairments by restoring the levels of tPA protein and by correcting the ratio of proNGF/NGF. Collectively, our research revealed potential mechanisms for the disturbance of NGF maturation and cholinergic degeneration in AD and identified a potential therapeutic target for AD.

4.
Aging Cell ; 19(11): e13235, 2020 11.
Article in English | MEDLINE | ID: mdl-33068460

ABSTRACT

Incidence of intracerebral hemorrhage (ICH) and brain iron accumulation increases with age. Excess iron accumulation in brain tissues post-ICH induces oxidative stress and neuronal damage. However, the mechanisms underlying iron deregulation in ICH, especially in the aged ICH model have not been well elucidated. Ferroportin1 (Fpn) is the only identified nonheme iron exporter in mammals to date. In our study, we reported that Fpn was significantly upregulated in perihematomal brain tissues of both aged ICH patients and mouse model. Fpn deficiency induced by injecting an adeno-associated virus (AAV) overexpressing cre recombinase into aged Fpn-floxed mice significantly worsened the symptoms post-ICH, including hematoma volume, cell apoptosis, iron accumulation, and neurologic dysfunction. Meanwhile, aged mice pretreated with a virus overexpressing Fpn showed significant improvement of these symptoms. Additionally, based on prediction of website tools, expression level of potential miRNAs in ICH tissues and results of luciferase reporter assays, miR-124 was identified to regulate Fpn expression post-ICH. Higher serum miR-124 levels were correlated with poor neurologic scores of aged ICH patients. Administration of miR-124 antagomir enhanced Fpn expression and attenuated iron accumulation in aged mice model. Both apoptosis and ferroptosis, but not necroptosis, were regulated by miR-124/Fpn signaling manipulation. Our study demonstrated the critical role of miR-124/Fpn signaling in iron metabolism and neuronal death post-ICH in aged murine model. Thus, Fpn upregulation or miR-124 inhibition might be promising therapeutic approachs for this disease.


Subject(s)
Cerebral Hemorrhage/genetics , Ferroptosis/genetics , Neurons/metabolism , Animals , Apoptosis , Cell Death , Cerebral Hemorrhage/pathology , Disease Models, Animal , Humans , Mice , Signal Transduction
5.
J Alzheimers Dis ; 74(3): 883-901, 2020.
Article in English | MEDLINE | ID: mdl-32083584

ABSTRACT

Neurotoxicity is one of the major pathological changes in multiple neurological disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD), the second popular neurodegenerative disease in aged people. It is known that the AD and PD share the similar neuropathological hallmarks, such as the oxidative stress, loss of specific neurons, and aggregation of specific proteins. However, there are no effective therapeutic drugs for both AD and PD yet. Oxytocin (OXT) is a small peptide with 9 amino acids that is neuroprotective to many neurological disorders. Whether OXT administration confers neuroprotection to 1-methyl-4-phenyl-1, 2, 3, 6- tetrahydropyridine (MPTP)-induced neurotoxicity in mice are still not known. In this study, we first found that the OXT levels are decreased in MPTP mice. Supplementation with OXT effectively rescues the locomotor disabilities and anxiety-like behaviors in MPTP mice. OXT also alleviates the hyperphosphorylation of α-synuclein at S129 site and the loss of dopaminergic neurons in the substantia nigra pars compacta, as well as the oxidative stress in the MPTP mice, and alleviates both oxidative stress and cell cytotoxicity in vitro. Furthermore, we found that OXT could inhibit the miR-26a/DAPK1 signal pathway in MPTP mice. In summary, our study demonstrates protective effects of OXT in MPTP mice and that miR-26a/DAPK1 signaling pathway may play an important role in mediating the protection of OXT.


Subject(s)
Death-Associated Protein Kinases/drug effects , MPTP Poisoning/drug therapy , MicroRNAs/drug effects , Neuroprotective Agents/therapeutic use , Oxytocin/therapeutic use , Signal Transduction/drug effects , Animals , Behavior, Animal/drug effects , Cell Line, Tumor , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , MPTP Poisoning/psychology , Male , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Motor Activity/drug effects , Oxidative Stress/drug effects , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/psychology , Psychomotor Performance/drug effects
6.
Aging Cell ; 18(2): e12902, 2019 04.
Article in English | MEDLINE | ID: mdl-30706990

ABSTRACT

Impairments of dendritic trees and spines have been found in many neurodegenerative diseases, including Alzheimer's disease (AD), in which the deficits of melatonin signal pathway were reported. Melatonin receptor 2 (MT2) is widely expressed in the hippocampus and mediates the biological functions of melatonin. It is known that melatonin application is protective to dendritic abnormalities in AD. However, whether MT2 is involved in the neuroprotection and the underlying mechanisms are not clear. Here, we first found that MT2 is dramatically reduced in the dendritic compartment upon the insult of oligomer Aß. MT2 activation prevented the Aß-induced disruption of dendritic complexity and spine. Importantly, activation of MT2 decreased cAMP, which in turn inactivated transcriptional factor CCAAT/enhancer-binding protein α(C/EBPα) to suppress miR-125b expression and elevate the expression of its target, GluN2A. In addition, miR-125b mimics fully blocked the protective effects of MT2 activation on dendritic trees and spines. Finally, injection of a lentivirus containing a miR-125b sponge into the hippocampus of APP/PS1 mice effectively rescued the dendritic abnormalities and learning/memory impairments. Our data demonstrated that the cAMP-C/EBPα/miR-125b/GluN2A signaling pathway is important to the neuroprotective effects of MT2 activation in Aß-induced dendritic injuries and learning/memory disorders, providing a novel therapeutic target for the treatment of AD synaptopathy.


Subject(s)
Alzheimer Disease/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Dendrites/metabolism , MicroRNAs/metabolism , Receptor, Melatonin, MT2/metabolism , Alzheimer Disease/pathology , Animals , Cells, Cultured , Dendrites/pathology , Disease Models, Animal , Male , Maze Learning , Mice , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...