Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 946: 174165, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925379

ABSTRACT

Oil-contaminated soil posed serious threats to the ecosystems and human health. The unique and tunable properties of engineered nanomaterials (ENMs) enable new technologies for removing and repairing oil-contaminated soil. However, few studies systematically examined the linkage between the change of physicochemical properties and the removal efficiency and environmental functions (e.g., potential risk) of ENMs, which is vital for understanding the ENMs environmental sustainability and utilization as a safety product. Thus, this review briefly summarized the environmental applications of ENMs to removing petroleum oil from complex soil systems: Theoretical and practical fundamentals (e.g., excellent physicochemical properties, environmental stability, controlled release, and recycling technologies), and various ENMs (e.g., iron-based, carbon-based, and metal oxides nanomaterials) remediation case studies. Afterward, this review highlights the removing mechanism (e.g., adsorption, photocatalysis, oxidation/reduction, biodegradation) and the impact factor (e.g., nanomaterials species, natural organic matter, and soil matrix) of ENMs during the remediation process in soil ecosystems. Both positive and negative effects of ENMs on terrestrial organisms have been identified, which are mainly derived from their diverse physicochemical properties. In linking nanotechnology applications for repairing oil-contaminated soil back to the physical and chemical properties of ENMs, this critical review aims to raise the research attention on using ENMs as a fundamental guide or even tool to advance soil treatment technologies.

2.
J Affect Disord ; 354: 1-10, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38452936

ABSTRACT

BACKGROUND: Prenatal depression, associated with adverse effects on mothers and fetuses, has received little attention. We conducted a large-sample study to investigate the risk factors of, and develop a predictive model for, prenatal depression in the Chinese population. METHODS: This study enrolled 14,329 pregnant women who delivered at the West China Second University Hospital, Sichuan University from January 2017 to December 2020. Participants were divided into a training or validation cohort. Multiple variables were collected and selected using univariate logistic regression and least absolute shrinkage and selection operator penalty regression. After multivariate logistic analysis, a predictive model was developed and validated internally and externally. RESULTS: Nine variables (employment, planned pregnancy, pregnancy number, conception methods, gestational diabetes mellitus, twin pregnancy, placenta previa, umbilical cord encirclement, and educational attainment) were identified as independent risk factors for prenatal depression. Receiver operating characteristic curves in both the training and validation cohorts showed excellent discrimination of the predictive model (the area under the curve: 0.746 and 0.732, respectively). LIMITATIONS: The results of this retrospective study may be affected by confounding and information bias. Some important variables were excluded, such as family history of mental disorders. The study was conducted in China; its results may not be generalizable to other regions. CONCLUSION: Our study identified nine significant risk factors for prenatal depression and constructed an accurate predictive model. This model could be applied as a clinical decision aid for individualized risk estimates and prevention of prenatal depression.


Subject(s)
Depression , Diabetes, Gestational , Pregnancy , Humans , Female , Retrospective Studies , Depression/epidemiology , Risk Factors , Logistic Models , Vitamins , China/epidemiology
3.
Front Cardiovasc Med ; 10: 1150657, 2023.
Article in English | MEDLINE | ID: mdl-37288269

ABSTRACT

Background: Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy that is rarely diagnosed in infants or young children. However, some significant homozygous or compound heterozygous variants contribute to more severe clinical manifestations. In addition, inflammation of the myocardium and ventricular arrhythmia might lead to misdiagnosis with myocarditis. Here, we describe an 8-year-old patient who had been misdiagnosed with myocarditis. Timely genetic sequencing helped to identify this case as ACM induced by a homozygous variant of DSG2. Case presentation: The proband of this case was an 8-year-old boy who initially presented with chest pain with an increased level of cardiac Troponin I. In addition, the electrocardiogram revealed multiple premature ventricular beats. Cardiac magnetic resonance revealed myocardial edema in the lateral ventricular wall and apex, indicating localized injuries of the myocardium. The patient was primarily suspected to have acute coronary syndrome or viral myocarditis. Whole-exome sequencing confirmed that the proband had a homozygous variation, c.1592T > G, of the DSG2 gene. This mutation site was regulated by DNA modification, which induced amino acid sequence changes, protein structure effects, and splice site changes. According to MutationTaster and PolyPhen-2 analyses, the variant was considered a disease-causing mutation. Next, we used SWISS-MODEL to illustrate the mutation site of p.F531C. The ensemble variance of p.F531C indicated the free energy changes after the amino acid change. Conclusion: In summary, we reported a rare pediatric case initially presenting as myocarditis that transitioned into ACM during follow-up. A homozygous genetic variant of DSG2 was inherited in the proband. This study expanded the clinical feature spectrum of DSG2-associated ACM at an early age. Additionally, the presentation of this case emphasized the difference between homozygous and heterozygous variants of desmosomal genes in disease progression. Genetic sequencing screening could be helpful in distinguishing unexplained myocarditis in children.

4.
Medicina (Kaunas) ; 59(6)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37374362

ABSTRACT

Background: The maturation of cardiomyocytes is a rapidly evolving area of research within the field of cardiovascular medicine. Understanding the molecular mechanisms underlying cardiomyocyte maturation is essential to advancing our knowledge of the underlying causes of cardiovascular disease. Impaired maturation can lead to the development of cardiomyopathy, particularly dilated cardiomyopathy (DCM). Recent studies have confirmed the involvement of the ACTN2 and RYR2 genes in the maturation process, facilitating the functional maturation of the sarcomere and calcium handling. Defective sarcomere and electrophysiological maturation have been linked to severe forms of cardiomyopathy. This report presents a rare case of DCM with myocardial non-compaction, probably resulting from allelic collapse of both the ACTN2 and RYR2 genes. Case Presentation: The proband in this case was a four-year-old male child who presented with a recurrent and aggressive reduction in activity tolerance, decreased ingestion volume, and profuse sweating. Electrocardiography revealed significant ST-T segment depression (II, III, aVF V3-V6 ST segment depression >0.05 mV with inverted T-waves). Echocardiography showed an enlarged left ventricle and marked myocardial non-compaction. Cardiac magnetic resonance imaging revealed increased left ventricular trabeculae, an enlarged left ventricle, and a reduced ejection fraction. Whole exome sequencing revealed a restricted genomic depletion in the 1q43 region (chr1:236,686,454-237,833,988/Hg38), encompassing the coding genes ACTN2, MTR, and RYR2. The identified variant resulted in heterozygous variations in these three genes, with the ACTN2 g.236,686,454-236,764,631_del and RYR2 g.237,402,134-237,833,988_del variants being the dominant contributors to the induction of cardiomyopathy. The patient was finally diagnosed with DCM and left ventricular myocardial non-compaction. Conclusions: This study reports a rare case of DCM with myocardial non-compaction caused by the allelic collapse of the ACTN2 and RYR2 genes. This case provides the first human validation of the critical role of cardiomyocyte maturation in maintaining cardiac function and stability and confirms the key findings of previous experimental research conducted by our group. This report emphasizes the connection between genes involved in regulating the maturation of cardiomyocytes and the development of cardiomyopathy.


Subject(s)
Cardiomyopathy, Dilated , Male , Child , Humans , Child, Preschool , Cardiomyopathy, Dilated/pathology , Myocytes, Cardiac/pathology , Ryanodine Receptor Calcium Release Channel/genetics , Myocardium/pathology , Heart Ventricles
5.
Sensors (Basel) ; 20(17)2020 Aug 28.
Article in English | MEDLINE | ID: mdl-32872294

ABSTRACT

Since the observation precision of the Global Navigation Satellite System (GNSS) carrier phase is on the order of millimeters, if the phase ambiguity is correctly solved, while calibrating the receiver inter-frequency bias, time synchronization on the order of tens of picoseconds is expected. In this contribution, a method that considers the prior constraints of the between-receiver inter-frequency bias (IFB) and its random variation characteristics is proposed for the estimation of the between-receiver clock difference, based on the uncombined GNSS carrier phase and pseudorange observations of the zero and short baselines. The proposed method can rapidly achieve the single-difference ambiguity resolution of the zero and short baselines, and then obtain the high-precision relative clock offset, by using only the carrier phase observations, along with the between-receiver IFBs being simultaneously determined. Our numerical tests, carried out using GNSS observations sampled every 30 s by a dedicatedly selected set of zero and short baselines, show that the method can fix the between-receiver single-difference ambiguity successfully within an average of fewer than 2 epochs (interval 30 s). Then, a clock difference between two receivers with millimeter precision is obtained, achieving time synchronization on tens of picoseconds level, and deriving a frequency stability of 5 × 10-14 for averaging times of 30,000 s. Furthermore, the proposed approach is compared with the precise point positioning (PPP) time transfer method. The results show that, for different types of receivers, the agreement between the two methods is between -6.7 ns and 0.2 ns.

SELECTION OF CITATIONS
SEARCH DETAIL
...