Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 10(11): 3307-3314, 2019 Mar 21.
Article in English | MEDLINE | ID: mdl-30996917

ABSTRACT

The indicator displacement assay (IDA) is for the first time performed within a metal-organic framework (MOF) to achieve ultrasensitive fluorescence turn-on sensing. A Zr(iv) ion MOF (UiO-67-DQ-PsO) furnished with electron-deficient diquat units (DQ2+, as the receptor) on the wall and electron-rich 1-pyrenesulfonate anions (PsO-, as the fluorescent indicator) in the pores was prepared by postsynthetic anion exchange. The MOF is capable of sensing alkylamines owing to the competing PsO--DQ2+ and alkylamine-DQ2+ charge-transfer interactions, the former interaction causing a fluorescence OFF state and the latter displacing PsO- to trigger its emission. Significant advantages have been demonstrated for the IDA inside the MOF. The turn-on assay exhibits much higher sensitivity and anti-interference than the turn-off sensing using the MOF without indicators (the sensitivity is enhanced by as much as six orders of magnitude to the subnanomolar level). The integration of both the receptor and indicator in the porous solid enables facile regeneration and recyclability of the IDA ensemble. Furthermore, we show that the confined space provided by the MOF significantly enhances the supramolecular interactions to make possible the IDA impossible in solution. This work not only demonstrates a novel conceptual approach to fabricate superior fluorescence turn-on sensors using porous materials but also has important implications for supramolecular chemistry in porous materials.

2.
ChemSusChem ; 12(10): 2202-2210, 2019 May 21.
Article in English | MEDLINE | ID: mdl-30883018

ABSTRACT

Ionic metal-organic frameworks (IMOFs) that integrate synergistic Lewis-acid sites (intrinsic metal centers of the frameworks) and nucleophilic anions (halides encapsulated within pores) are intriguing platforms for the design of fully heterogeneous catalytic systems for cycloaddition of CO2 to epoxides. A new, facile and versatile synthetic approach has been used to fabricate triazolium-based IMOFs for the first time. The approach makes use of azide-alkyne click chemistry and subsequent N-alkylation to post-synthetically create a cationic triazolium ring and introduce exchangeable counteranions at the same time. The IMOFs are efficient and recyclable heterogeneous catalysts for CO2 conversion under mild and cocatalyst-free conditions. In particular, the click-accessible triazolium ring provides a handle to incorporate further functionality. The MIL-101-tzmOH-Br catalyst, which integrates hydrogen-bonding hydroxy groups besides metal centers and bromide anions, shows superior catalytic performance under mild conditions.

3.
Small ; 15(5): e1803468, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30624027

ABSTRACT

Metal-organic frameworks (MOFs) provide intriguing platforms for the design of responsive materials. It is challenging to mobilize as many components as possible of a MOF to collaboratively accomplish multiple responsive properties. Here, reversible photochromism, piezochromism, hydrochromism, ionochromism, and luminescence modulation of an ionic Eu(III) MOF is reported furnished by cationic electron-deficient viologen units and exchangeable guest anions. Mechanistically, the extraordinarily versatile responsive properties are owed to electron transfer (ET), charge transfer (CT), and energy transfer, involving viologen as electron acceptor, anion as electron donor, luminescing Eu(III) as energy donor, and anion-viologen CT complex or ET-generated radical as energy acceptor (luminescence quencher). Moreover, guest anions and waters provide flexible handles to control the ET-based responsive properties. Water release/reuptake or exchange with organic solvents can switch on/off the response to light, while reversible anion exchange can disenable or awaken the responses to pressure, light, and water release/reuptake. The impacts of water and anions on ET are justified by the high polarity and hydrogen-bonding capability of water, the different electron donor strength of anions, and the strong I- -viologen CT interactions. The rich responsive behaviors have great implications for applications such as pressure sensors, iodide detection, and chemical logic gates.

4.
Inorg Chem ; 57(12): 6791-6794, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29847921

ABSTRACT

The Mn(II) metal-organic framework with a viologen-based tetracarboxylate ligand exhibits reversible optical (color) and magnetic changes concomitant with stimuli-induced electron transfer from carboxylate to viologen. Compression causes a magnetic transformation from ferro- to ferrimagnetic, while water release/reuptake switches the magnetic behavior between ferro- and antiferromagnetic.

5.
Chem Commun (Camb) ; 53(72): 9975-9978, 2017 Sep 05.
Article in English | MEDLINE | ID: mdl-28831463

ABSTRACT

A novel pillared-layered entangled luminescent metal-organic framework [Zn2(bpdc)2(BPyTPE)] (1) (BPyTPE = (E)-1,2-diphenyl-1,2-bis(4-(pyridin-4-yl)phenyl)ethene) has been designed and constructed. The solvent-free 1 exhibits strong blue-green emission with an excellent fluorescence quantum yield of 99% and provides a facile and reversible method to sensitively and quantitatively detect trace pesticide of 2,6-dichloro-4-nitroaniline.

SELECTION OF CITATIONS
SEARCH DETAIL
...