Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 236
Filter
1.
Exp Gerontol ; 196: 112571, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39236869

ABSTRACT

Sarcopenia, characterized by the loss of skeletal muscle mass and function, is a significant complication in patients with cirrhosis. This condition not only exacerbates the overall morbidity and mortality associated with liver disease but also complicates patient management, increasing the risk of hospitalization, infections, and hepatic encephalopathy. Despite its clinical significance, sarcopenia in cirrhotic patients remains underdiagnosed and undertreated. This review aims to summarize current knowledge on the pathophysiology of sarcopenia in cirrhosis, including mechanisms such as altered metabolism, hormonal imbalances, and inflammation. Additionally, we explore diagnostic challenges and discuss emerging therapeutic strategies, including nutritional support, exercise, and pharmacological interventions. By highlighting the gaps in existing research and proposing directions for future studies, this review seeks to improve the management and outcomes of cirrhotic patients affected by sarcopenia.


Subject(s)
Liver Cirrhosis , Sarcopenia , Humans , Sarcopenia/therapy , Sarcopenia/physiopathology , Sarcopenia/etiology , Liver Cirrhosis/complications , Liver Cirrhosis/physiopathology , Liver Cirrhosis/therapy , Muscle, Skeletal/physiopathology , Nutritional Support , Exercise Therapy
2.
Article in English | MEDLINE | ID: mdl-39299764

ABSTRACT

OBJECTIVE: Neonatal meningitis significantly contributes to neonatal morbidity and mortality, yet large-scale epidemiological data in developing countries, particularly among very preterm infants (VPIs), remain sparse. This study aimed to describe the epidemiology of meningitis among VPIs in China. DESIGN: Cross-sectional study using the Chinese Neonatal Network database from 2019 to 2021. SETTING: 79 tertiary neonatal intensive care units in China. PATIENTS: Infants with gestational age <32 weeks or birth weight <1500 g. MAIN OUTCOME MEASURES: Incidence, pathogen distribution, antimicrobial use and outcomes of bacterial and fungal meningitis. RESULTS: Of 31 915 VPIs admitted, 122 (0.38%) infants were diagnosed with culture-confirmed meningitis, with 14 (11.5%) being early-onset (≤6 days of age) and 108 (88.5%) being late-onset (>6 days of age). The overall in-hospital mortality was 18.0% (22/122). A total of 127 pathogens were identified, among which 63.8% (81/127) were Gram-negative bacteria, 24.4% (31/127) were Gram-positive bacteria and 11.8% (15/127) were fungi. In terms of empirical therapy (on the day of the first lumbar puncture), the most commonly used antibiotic was meropenem (54.9%, 67/122). For definitive therapy (on the sixth day following the first lumbar puncture, 86 cases with available antibiotic data), meropenem (60.3%, 35/58) and vancomycin (57.1%, 16/28) were the most used antibiotics for Gram-negative and Gram-positive bacterial meningitis, respectively. 44% of infants with Gram-positive bacterial meningitis and 52% with Gram-negative bacterial meningitis received antibiotics for more than 3 weeks. CONCLUSION: 0.38% of VPIs in Chinese neonatal intensive care units were diagnosed with meningitis, experiencing significant mortality and inappropriate antibiotic therapy. Gram-negative bacteria were the predominant pathogens, with fungi emerging as a significant cause.

3.
Diabetes Metab Syndr Obes ; 17: 3295-3303, 2024.
Article in English | MEDLINE | ID: mdl-39252872

ABSTRACT

Objective: Tsukushi is a newly identified hepatokine. Recent studies have shown that it relates to diabetes, lipid metabolism and fibrosis, but there is currently no investigation about whether Tsukushi is associated with diabetic kidney disease. Therefore, this study aimed to investigate the relationship between Tsukushi and diabetic kidney disease by characterizing Tsukushi levels in healthy subjects and type 2 diabetes with urinary albumin-creatinine ratio. Methods: Serum Tsukushi level was quantified by enzyme-linked immunosorbent assay in 167 normoalbuminuria, 80 microalbuminuria, and 31 macroalbuminuria patients with type 2 diabetes as compared with 53 healthy subjects. The correlation analysis was used to investigate the relationship between urinary albumin-creatinine ratio or Tsukushi level and other metabolic parameters. Multiple linear regression and logistic regression analysis were used to analyze the independent factors for urinary albumin-creatinine ratio and estimated glomerular filtration rate. Results: The Tsukushi level in the macroalbuminuria group was significantly higher than that in the normoalbuminuria or the microalbuminuria group. Multiple linear regression showed that the significantly independent factors for UACR included high Tsukushi quartile, systolic blood pressure, creatinine, homeostasis model assessment of insulin resistance, low 2-h post-oral glucose tolerance test c-peptide and female. Logistic regression demonstrated that the odds ratio of Tsukushi for glomerular filtration rate ≤90(mL/min/1.73m2) was 1.636 (95% CI 1.091-2.452, P=0.017). Conclusion: The circulating Tsukushi increased in type 2 diabetes patients with albuminuria and was associated with urinary albumin-creatinine ratio, implying that Tsukushi may be involved in the pathogenesis of diabetic kidney disease, which deserves future studies.

4.
J Agric Food Chem ; 72(33): 18478-18488, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39106342

ABSTRACT

Fusarium crown and root rot (FCRR) has emerged as a highly destructive soil-borne disease, posing a significant threat to the safe cultivation of tomatoes in recent years. The pathogen of tomato FCRR is Fusarium oxysporum f. sp. radicis-lycopersici (Forl). To explore potential phytotoxins from Forl, eight undescribed diterpenoids namely fusariumic acids A-H (1-8) were isolated. Their structures were elucidated by using spectroscopic data analyses, quantum chemical calculations, and X-ray crystallography. Fusariumic acids A (1) and C-H (3-8) were typical isocassadiene-type diterpenoids, while fusariumic acid B (2) contained a cage-like structure with an unusual 7,8-seco-isocassadiene skeleton. A biosynthetic pathway of 2 was proposed. Fusariumic acids A (1) and C-H (3-8) were further assessed for their phytotoxic effects on tomato seedlings at 200 µg/mL. Among them, fusariumic acid F (6) exhibited the strongest inhibition against the hypocotyl and root elongation of tomato seedlings, with inhibitory rates of 61.3 and 45.3%, respectively.


Subject(s)
Diterpenes , Fusarium , Plant Diseases , Plant Roots , Solanum lycopersicum , Fusarium/drug effects , Solanum lycopersicum/microbiology , Diterpenes/chemistry , Diterpenes/pharmacology , Plant Diseases/microbiology , Plant Roots/microbiology , Plant Roots/chemistry , Molecular Structure
5.
J Fungi (Basel) ; 10(8)2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39194887

ABSTRACT

Fungi are rich sources of secondary metabolites of agrochemical, pharmaceutical, and food importance, such as mycotoxins, antibiotics, and antitumor agents. Secondary metabolites play vital roles in fungal pathogenesis, growth and development, oxidative status modulation, and adaptation/resistance to various environmental stresses. LaeA contains an S-adenosylmethionine binding site and displays methyltransferase activity. The members of velvet proteins include VeA, VelB, VelC, VelD and VosA for each member with a velvet domain. LaeA and velvet proteins can form multimeric complexes such as VosA-VelB and VelB-VeA-LaeA. They belong to global regulators and are mainly impacted by light. One of their most important functions is to regulate gene expressions that are responsible for secondary metabolite biosynthesis. The aim of this mini-review is to represent the newest cognition of the biosynthetic regulation of mycotoxins and other fungal secondary metabolites by LaeA and velvet proteins. In most cases, LaeA and velvet proteins positively regulate production of fungal secondary metabolites. The regulated fungal species mainly belong to the toxigenic fungi from the genera of Alternaria, Aspergillus, Botrytis, Fusarium, Magnaporthe, Monascus, and Penicillium for the production of mycotoxins. We can control secondary metabolite production to inhibit the production of harmful mycotoxins while promoting the production of useful metabolites by global regulation of LaeA and velvet proteins in fungi. Furthermore, the regulation by LaeA and velvet proteins should be a practical strategy in activating silent biosynthetic gene clusters (BGCs) in fungi to obtain previously undiscovered metabolites.

6.
Diabetes Metab Syndr Obes ; 17: 2639-2653, 2024.
Article in English | MEDLINE | ID: mdl-38974952

ABSTRACT

Objective: To investigate the implications of elevated myoglobin (MYO) in acute diabetic conditions of diabetic ketoacidosis (DKA) and hyperosmolar hyperglycemic state (HHS). Materials and methods: This study integrates in-patient data from Shanghai Pudong Hospital from 2019 to 2023. Laboratory data were compared between stable T2D patients (without acute diabetic complications), DKA, and HHS patients. The multilinear regression explored variables relevant to the elevated MYO in DKA and HHS. The dynamics of MYO, the survival rate, and associated risk factors in HHS were determined. Results: Except for triglyceride, procalcitonin, low-density lipoprotein, islet cell autoimmune antibodies, N-terminal Pro-brain natriuretic peptide (NT-ProBNP), and brain natriuretic peptide (BNP), there were significant differences in age, gender distribution, duration of diabetes, type of diabetes, and other referred laboratory data (p<0.05). The age, gender, creatine kinase (CK), estimated glomerular filtration rate (eGFR), and free triiodothyronine (FT3) in DKA, whereas osmolar, uric acid (UA), and cardiac troponin I (cTNI) in the HHS, were significant determinants of elevated MYO, respectively (p<0.05). The dynamic of MYO in HHS was in line with the survival trend, where the percentage of death was 29.73%, and aging with higher procalcitonin levels was a key risk factor. Besides, the cumulative survival rates between patients with or without bone fracture or muscle injury were substantially different. Conclusion: This real-world study demonstrated DKA and HHS potentially have unique causes for increased MYO. By utilizing the appropriate regression parameters, we could forecast the progression of increased MYO in groups of DKA and HHS, while based on risk factors of aging, severity of infection, and different MYO sources, we could predict the prognosis of HHS.

7.
Bioorg Chem ; 148: 107479, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38772292

ABSTRACT

Palmarymycins B8 (1), its regioisomer (2) and B7 (3) were synthesized via 10-, 9-, and 11-steps in 6.5 %, 2.3 % and 0.54 % overall yields from chroman-4-one (4), 4-hydroxyindanone (12), and 2,5-dimethoxybenzaldehyde (20) as the starting materials, using benzyl protection, enol trimethylsilyl ether by TMSOTf, Rubottom oxidation and deprotection with hydrogenation under Pd/C catalyst as the key steps, respectively. Their structures were characterized by 1H, 13C NMR, COSY, HSQC, HMBC and HR-ESI-MS spectral data. The structure of palmarumycin B8 was revised from 1 to 2 based on the total synthesis, 2D NMR analysis and DFT calculation. The antifungal assay results indicated that palmarumycin B8 (1) showed moderate inhibitory activity against Phytophthora capsica. Compounds 15 and 16 exhibited excellent in vitro antifungal activities against P. capsica with EC50 values of 2.17 and 8.50 µg/mL, respectively.


Subject(s)
Antifungal Agents , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Density Functional Theory
8.
IEEE J Biomed Health Inform ; 28(9): 5189-5200, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38771683

ABSTRACT

Sleep staging plays a critical role in evaluating the quality of sleep. Currently, most studies are either suffering from dramatic performance drops when coping with varying input modalities or unable to handle heterogeneous signals. To handle heterogeneous signals and guarantee favorable sleep staging performance when a single modality is available, a pseudo-siamese neural network (PSN) to incorporate electroencephalography (EEG), electrooculography (EOG) characteristics is proposed (PSEENet). PSEENet consists of two parts, spatial mapping modules (SMMs) and a weight-shared classifier. SMMs are used to extract high-dimensional features. Meanwhile, joint linkages among multi-modalities are provided by quantifying the similarity of features. Finally, with the cooperation of heterogeneous characteristics, associations within various sleep stages can be established by the classifier. The evaluation of the model is validated on two public datasets, namely, Montreal Archive of Sleep Studies (MASS) and SleepEDFX, and one clinical dataset from Huashan Hospital of Fudan University (HSFU). Experimental results show that the model can handle heterogeneous signals, provide superior results under multimodal signals and show good performance with single modality. PSEENet obtains accuracy of 79.1%, 82.1% with EEG, EEG and EOG on Sleep-EDFX, and significantly improves the accuracy with EOG from 73.7% to 76% by introducing similarity information.


Subject(s)
Electroencephalography , Electrooculography , Neural Networks, Computer , Signal Processing, Computer-Assisted , Sleep Stages , Humans , Electrooculography/methods , Electroencephalography/methods , Sleep Stages/physiology , Adult , Male , Female , Young Adult , Middle Aged , Algorithms
9.
Phytochemistry ; 222: 114103, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38636686

ABSTRACT

Eight new cytochalasans rosellichalasins A-H (1-8), as well as two new shunt metabolites rosellinins A (9) and B (10) before intramolecular Diels-Alder cycloaddition reaction in cytochalasan biosynthesis, along with nine known cytochalsans (11-19) were isolated from the endophytic fungus Rosellinia sp. Glinf021, which was derived from the medicinal plant Glycyrrhiza inflata. Their structures were characterized by extensive analysis of 1D and 2D NMR as well as HRESIMS spectra and quantum chemical ECD calculations. The cytotoxic activities of these compounds were evaluated against four human cancer cell lines including HCT116, MDA-MB-231, BGC823, and PANC-1 with IC50 values ranging from 0.5 to 58.2 µM.


Subject(s)
Antineoplastic Agents , Cytochalasins , Drug Screening Assays, Antitumor , Xylariales , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , Cell Proliferation/drug effects , Cytochalasins/chemistry , Cytochalasins/pharmacology , Cytochalasins/isolation & purification , Dose-Response Relationship, Drug , Endophytes/chemistry , Molecular Structure , Structure-Activity Relationship , Xylariales/chemistry , Xylariales/classification
10.
World J Microbiol Biotechnol ; 40(6): 176, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652405

ABSTRACT

The endophytic fungus Berkleasmium sp. Dzf12 that was isolated from Dioscorea zingiberensis, is a proficient producer of palmarumycins, which are intriguing polyketides of the spirobisnaphthalene class. These compounds displayed a wide range of bioactivities, including antibacterial, antifungal, and cytotoxic activities. However, conventional genetic manipulation of Berkleasmium sp. Dzf12 is difficult and inefficient, partially due to the slow-growing, non-sporulating, and highly pigmented behavior of this fungus. Herein, we developed a CRISPR/Cas9 system suitable for gene editing in Berkleasmium sp. Dzf12. The protoplast preparation was optimized, and the expression of Cas9 in Berkleasmium sp. Dzf12 was validated. To assess the gene disruption efficiency, a putative 1, 3, 6, 8-tetrahydroxynaphthalene synthase encoding gene, bdpks, involved in 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis, was selected as the target for gene disruption. Various endogenous sgRNA promoters were tested, and different strategies to express sgRNA were compared, resulting in the construction of an optimal system using the U6 snRNA-1 promoter as the sgRNA promoter. Successful disruption of bdpks led to a complete abolishment of the production of spirobisnaphthalenes and melanin. This work establishes a useful gene targeting disruption system for exploration of gene functions in Berkleasmium sp. Dzf12, and also provides an example for developing an efficient CRISPR/Cas9 system to the fungi that are difficult to manipulate using conventional genetic tools.


Subject(s)
Ascomycota , CRISPR-Cas Systems , Gene Editing , Gene Editing/methods , Ascomycota/genetics , Ascomycota/metabolism , Endophytes/genetics , Endophytes/metabolism , Melanins/biosynthesis , Melanins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Protoplasts
11.
Angew Chem Int Ed Engl ; 63(23): e202401979, 2024 06 03.
Article in English | MEDLINE | ID: mdl-38581278

ABSTRACT

Spirobisnaphthalenes (SBNs) are a class of highly oxygenated, fungal bisnaphthalenes containing a unique spiroketal bridge, that displayed diverse bioactivities. Among the reported SBNs, palmarumycins are the major type, which are precursors for the other type of SBNs structurally. However, the biosynthesis of SBNs is unclear. In this study, we elucidated the biosynthesis of palmarumycins, using gene disruption, heterologous expression, and substrate feeding experiments. The biosynthetic gene cluster for palmarumycins was identified to be distant from the polyketide synthase gene cluster, and included two cytochrome P450s (PalA and PalB), and one short chain dehydrogenase/reductase (PalC) encoding genes as key structural genes. PalA is an unusual, multifunctional P450 that catalyzes the oxidative dimerization of 1,8-dihydroxynaphthalene to generate the spiroketal linkage and 2,3-epoxy group. Chemical synthesis of key intermediate and in vitro biochemical assays proved that the oxidative dimerization proceeded via a binaphthyl ether. PalB installs the C-5 hydroxy group, widely found in SBNs. PalC catalyzes 1-keto reduction, the reverse 1-dehydrogenation, and 2,3-epoxide reduction. Moreover, an FAD-dependent oxidoreductase, encoded by palD, which locates outside the cluster, functions as a 1-dehydrogenase. These results provided the first genetic and biochemical evidence for the biosynthesis of palmarumycin SBNs.


Subject(s)
Naphthalenes , Spiro Compounds , Spiro Compounds/metabolism , Spiro Compounds/chemistry , Naphthalenes/metabolism , Naphthalenes/chemistry , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/genetics , Multigene Family , Oxidoreductases/metabolism , Oxidoreductases/genetics , Oxidoreductases/chemistry
12.
Bioengineering (Basel) ; 11(4)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38671810

ABSTRACT

Obstructive Sleep Apnea (OSA), a sleep disorder with high prevalence, is normally accompanied by affective, autonomic, and cognitive abnormalities, and is deemed to be linked to functional brain alterations. To investigate alterations in brain functional connectivity properties in patients with OSA, a comparative analysis of global and local topological properties of brain networks was conducted between patients with OSA and healthy controls (HCs), utilizing functional near-infrared spectroscopy (fNIRS) imaging. A total of 148 patients with OSA and 150 healthy individuals were involved. Firstly, quantitative alterations in blood oxygen concentration, changes in functional connectivity, and variations in graph theory-based network topological characteristics were assessed. Then, with Mann-Whitney statistics, this study compared whether there are significant differences in the above characteristics between patients with OSA and HCs. Lastly, the study further examined the correlation between the altered characteristics and the apnea hypopnea index (AHI) using linear regression. Results revealed a higher mean and standard deviation of hemoglobin concentration in the superior temporal gyrus among patients with OSA compared to HCs. Resting-state functional connectivity (RSFC) exhibited a slight increase between the superior temporal gyrus and other specific areas in patients with OSA. Notably, neither patients with OSA nor HCs demonstrated significant small-world network properties. Patients with OSA displayed an elevated clustering coefficient (p < 0.05) and local efficiency (p < 0.05). Additionally, patients with OSA exhibited a tendency towards increased nodal betweenness centrality (p < 0.05) and degree centrality (p < 0.05) in the right supramarginal gyrus, as well as a trend towards higher betweenness centrality (p < 0.05) in the right precentral gyrus. The results of multiple linear regressions indicate that the influence of the AHI on RSFC between the right precentral gyrus and right superior temporal gyrus (p < 0.05), as well as between the right precentral gyrus and right supramarginal gyrus (p < 0.05), are statistically significant. These findings suggest that OSA may compromise functional brain connectivity and network topological properties in affected individuals, serving as a potential neurological mechanism underlying the observed abnormalities in brain function associated with OSA.

13.
BMC Geriatr ; 24(1): 325, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594634

ABSTRACT

BACKGROUND: Sarcopenia, an age-related disorder characterized by loss of skeletal muscle mass and function, is recently recognized as a complication in elderly patients with type 2 diabetes mellitus (T2DM). Skeletal muscles play a crucial role in glycemic metabolism, utilizing around 80% of blood glucose. Accordingly, we aimed to explore the relationship between glucose metabolism and muscle mass in T2DM. METHODS: We employed the AWGS 2019 criteria for diagnosing low muscle mass and 1999 World Health Organization (WHO) diabetes diagnostic standards. This study included data of 191 individuals aged 60 and above with T2DM of Shanghai Pudong Hospital from November 2021 to November 2022. Fasting C-peptide (FPCP), fasting plasma glucose (FPG), 2-hour postprandial plasma glucose (PPG) and postprandial 2-hour C-peptide (PPCP), glycated hemoglobin A1c (HbA1c), glycated albumin (GA), serum lipids spectrum, renal and hepatic function, hemoglobin, and hormone were measured. Based on the findings of univariate analysis, logistic regression and receiver operating characteristic (ROC) curves were established. RESULTS: Participants with low muscle mass had significantly lower alanine and aspartate aminotransferase, and both FPCP and PPCP levels (P < 0.05). Compared with those without low muscle mass, low muscle mass group had significantly higher FPG, HbA1c, GA levels (P < 0.05). Body fat (BF, OR = 1.181) was an independent risk factor for low muscle mass. PPCP (OR = 0.497), BMI (OR = 0.548), and female (OR = 0.050) were identified as protective factors for low skeletal muscle. The AUC of BMI was the highest, followed by the PPCP, gender and BF (0.810, 0.675, 0.647, and 0.639, respectively), and the AUC of the combination of the above four parameters reached 0.895. CONCLUSIONS: In this cross-sectional study, BMI, Female, and PPCP associated with T2DM were protective factors for low muscle mass. BF was associated with T2DM and risk factor for low muscle mass.


Subject(s)
Blood Glucose , Diabetes Mellitus, Type 2 , Aged , Humans , Female , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Glycated Hemoglobin , C-Peptide , Cross-Sectional Studies , China/epidemiology , Serum Albumin/analysis
14.
Exp Eye Res ; 242: 109885, 2024 May.
Article in English | MEDLINE | ID: mdl-38574944

ABSTRACT

The retinal microcirculation system constitutes a unique terminal vessel bed of the systemic circulation, and its perfusion status is directly associated with the neural function of the retina. This vascular network, essential for nourishing various layers of the retina, comprises two primary microcirculation systems: the retinal microcirculation and the choroidal microcirculation, with each system supplying blood to distinct retinal layers and maintaining the associated neural function. The blood flow of those capillaries is regulated via different mechanisms. However, a range of internal and external factors can disrupt the normal architecture and blood flow within the retinal microcirculation, leading to several retinal pathologies, including diabetic retinopathy, macular edema, and vascular occlusions. Metabolic disturbances such as hyperglycemia, hypertension, and dyslipidemia are known to modify retinal microcirculation through various pathways. These alterations are observable in chronic metabolic conditions like diabetes, coronary artery disease, and cerebral microvascular disease due to advances in non-invasive or minimally invasive retinal imaging techniques. Thus, examination of the retinal microcirculation can provide insights into the progression of numerous chronic metabolic disorders. This review discusses the anatomy, physiology and pathophysiology of the retinal microvascular system, with a particular emphasis on the connections between retinal microcirculation and systemic circulation in both healthy states and in the context of prevalent chronic metabolic diseases.


Subject(s)
Metabolic Diseases , Microcirculation , Retinal Vessels , Humans , Microcirculation/physiology , Retinal Vessels/physiopathology , Metabolic Diseases/physiopathology , Retinal Diseases/physiopathology , Regional Blood Flow/physiology
15.
Front Microbiol ; 15: 1385255, 2024.
Article in English | MEDLINE | ID: mdl-38638906

ABSTRACT

Chemical study of the nematicidal biocontrol fungus Pochonia chlamydosporia PC-170 led to discovery of six resorcylic acid lactones (RALs), including three nematicidal glycosylated RALs, monocillin VI glycoside (1), colletogloeolactone A (2) and monocillin II glycoside (3), and three antibacterial non-glycosylated RALs, monocillin VI (4), monocillin IV (5) and monocillin II (6). The planar structure of the new compound monocillin VI glycoside (1) was elucidated using HRESIMS and NMR data, and its monosaccharide configuration was further determined through sugar hydrolysis experiment and GC-MS analysis method. Furthermore, their two biosynthetic-related PKS genes, pchE and pchI, were identified through the gene knockout experiment. The glycosylated RALs 1-3 exhibited nematicidal activity against Meloidogyne incognita, with LC50 values of 94, 152 and 64 µg/mL, respectively, and thus had great potential in the development of new nematicidal natural products to control M. incognita in the future.

16.
Article in English | MEDLINE | ID: mdl-38498741

ABSTRACT

Measuring causal brain network is a significant topic for exploring complex brain functions. While various data-driven algorithms have been proposed, they still have some drawbacks such as ignoring time non-separability, cumbersome parameter settings, and poor robustness. To solve these deficiencies, we developed a novel framework: "time-shift permutation cross-mapping, TPCM," integrating steps of (1) delayed improved phase-space reconstruction (DIPSR), (2) rank transformation of embedding vectors' distances, (3) cross-mapping with a fitting estimation, and (4) causality quantification using multi-delays. Based on synthetic models and comparison with baseline methods, numerical validation results demonstrate that TPCM significantly improves the robustness for data length with or without noise interference, and achieves the best quantification accuracy in detecting time delay and coupling strength, with the highest determination coefficient ( R2 = 0. 96 ) of fitting verse coupling parameters. The developed TPCM was finally applied to ictal electrocorticogram (ECoG) analysis of patients with drug-resistant epilepsy (DRE). A total of 17 patients with DRE were included into the retrospective study. For 8 patients undergoing successful surgeries, the causal coupling strength (0.58 ± 0.20) within epileptogenic zone network is significantly higher than those suffering failed surgeries (0.38 ± 0.16) with P < 0. 001 through Mann-Whitney-U-test. Therefore, the epileptic brain network measured by TPCM is a credible biomarker for predicting surgical outcomes. These findings additionally confirm TPCM's superior performance and promising potential to advance precision medicine for neurological disorders.

17.
Horm Metab Res ; 56(9): 662-669, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38346689

ABSTRACT

The aim of the study was to investigate whether the biomarkers for bone turnover could rapidly recover during the period of diabetic ketoacidosis (DKA). Bone turnover biomarkers, including 25-hydroxyvitamin D3, N-terminal middle molecular fragment of osteocalcin (NMID), and ß-C terminal cross-linking telopeptide of type 1 collagen were evaluated using in-patient data (n=627) from Shanghai Pudong Hospital from 2018-2022. The comparison was performed between type 2 diabetes (T2D only) (n=602) and DKA (n=25), in which we checked the bone turnover markers at pre-treatment and recovery. After matching by body mass index (BMI), we found that except for 25-OH-VitD3, the age difference, indices of glucose metabolism, and bone turnover were significant between the 2 groups (p<0.05). We found only a significant restoration of NMID (p<0.001). NMID and ß-CTX, when compared with T2D, showed overt distinction between recovery and T2D (p<0.05). In addition, the investigations demonstrated a substantial difference between 25-OH-VitD3 in males and NMID in females, regardless of age (p<0.05). Multilinear regression analysis revealed that 2 hours postprandial plasma C-peptide was an independent predictor of the NMID in both pre-treatment (ß=0.58, p=0.003) and recovery (ß=0.447, p=0.025), although sex was significant in pre-treatment (ß=-0.444, p=0.020). Finally, we found that only age variation affected DKA's fasting plasma glucose level (p<0.05). The study revealed that the bone turnover of DKA is significantly different in pre-treatment and recovery; however, NMID might recover quickly if the patients received appropriate treatment. Importantly, pancreatic function plays a critical role in changing bone turnover biomarkers.


Subject(s)
Biomarkers , Bone Remodeling , Diabetes Mellitus, Type 2 , Diabetic Ketoacidosis , Humans , Female , Male , Biomarkers/blood , Middle Aged , Adult , Diabetic Ketoacidosis/blood , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/metabolism , Osteocalcin/blood , Aged , Collagen Type I/blood
18.
Pest Manag Sci ; 80(6): 2658-2667, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38284314

ABSTRACT

BACKGROUND: Phytopathogenic bacteria cause severe losses to crops every year. The management of crop bacterial diseases with chemical agents has been considered as the main strategy. In order to cope with the bactericide resistance made by the pathogens, new antibacterials need to be continuously developed. RESULTS: A chemical investigation from the endophytic fungus Rhexocercosporidium sp. Dzf14 has led to the isolation of 12 diphenyl ethers including two new ones named rhexocerin E (1) and rhexocercosporin G (2), along with two new depsides named rhexocerdepsides A (3) and B (4). The structures and absolute configurations of the new compounds were determined through comprehensive analysis of spectroscopic data and quantum chemical ECD calculations. Diphenyl ethers showed obviously antibacterial activity on Gram-positive bacteria. The structure-activity relationship of diphenyl ethers revealed that prenylation was critical to the antibacterial activity. Among them, rhexocercosporin D (12) possessed the strongest activity against Clavibacter michiganensis and Bacillus subtilis, and was selected for further mechanistic studies. It was found that rhexocercosporin D displayed bactericidal activity by affecting homeostasis of cell membranes. In addition to its rapid bactericidal effects on Gram-positive bacteria, rhexocercosporin D could restore the susceptibility against Gram-negative Agrobacterium tumefaciens by synergistic action with colistin. CONCLUSION: Twelve diphenyl ethers and two depsides were isolated from endophytic fungus Rhexocercosporidium sp. Dzf14. Isopentenyl was critical for diphenyl ethers against Gram-positive bacteria. Rhexocercosporin D could affect homeostasis of bacterial cell membrane to exert rapid bactericidal activity. These findings highlight the antibacterial potential of the diphenyl ethers in crop bacterial disease management. © 2024 Society of Chemical Industry.


Subject(s)
Anti-Bacterial Agents , Cell Membrane , Homeostasis , Phenyl Ethers , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Cell Membrane/drug effects , Phenyl Ethers/pharmacology , Phenyl Ethers/chemistry , Endophytes/chemistry , Structure-Activity Relationship , Gram-Positive Bacteria/drug effects , Molecular Structure
19.
Environ Sci Pollut Res Int ; 31(9): 14284-14302, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38277105

ABSTRACT

In this paper, an interval Air Quality Index (AQI) combination prediction model based on EEMD, VMD, and the weighted power average (WPA) operator is proposed. EEMD and VMD decompose complex AQI data effectively, while WPA operator reasonably aggregates the prediction results of different models. We validate the effectiveness of the proposed model using Shenzhen's daily interval AQI. Furthermore, three kinds of prediction models are compared with the proposed model to highlight its advantages from various perspectives. The results show that the introduction of data decomposition methods significantly improves the model's prediction accuracy, WPA operator further enhances the model's prediction capability, and the incorporation of EEMD and VMD enables the proposed model to have stronger feature extraction capabilities for complex time series. As a result, the model proposed in this paper demonstrates strong generalization ability and prediction accuracy, making it applicable not only for air quality prediction but also for other domains such as economics and environment.


Subject(s)
Air Pollution , Time Factors
20.
Diabetes Metab Syndr Obes ; 17: 393-405, 2024.
Article in English | MEDLINE | ID: mdl-38283634

ABSTRACT

Background: Despite the demonstrated benefits of insulin therapy, many general practitioners (GPs) are hesitant to administer it due to challenges such as a lack of knowledge, time constraints, and patient reluctance. The barriers that prevent a GP from initiating insulin therapy may vary in comparison to those encountered by a diabetic patient; this aspect of clinical research in the South Shanghai metropolitan area has received limited attention so far. Objective: This is a 6-months of interventional analytic cohort study. The prime aim is to investigate the barriers general practitioners (GPs) face when initiating insulin therapy for patients with type 2 diabetes (T2D). Materials and Methods: As part of a training program, all 189 registered GPs in Nanhui Health Service Center in Shanghai were given a structured online-multi-choice questionnaire before and after a six-month interval, during which the GPs received sessions of training on insulin therapy either on theoretic classes or clinical practices. Results: Before and after training, via the methods of multiple-response analyses, the results showed that social, GP's, and patient barriers to initiating insulin therapy were comparable. However, through the crosstabs chi-square test, we found significant changes in the basal insulin initiation following the prescription of the senior endocrinologists, the titration of insulin, and the need for training (p<0.05). The Spearman analyses discovered significant changes associated with the cause of initial insulin refusal and the factors influencing insulin administration. Finally, the binary logistic regression analysis revealed that distinct causes such as social factors, insurance, GP experience, insulin dosage calculation, follow-up, and patients' feelings are related to insulin treatment application before and after training. Conclusion: According to this study, training increased general practitioners' confidence in initiating insulin administration, especially basal insulin. General practitioners require additional education on insulin therapy, with a potential need for increased face-to-face training for insulin initiation.

SELECTION OF CITATIONS
SEARCH DETAIL