Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Nanomedicine ; 16: 8049-8065, 2021.
Article in English | MEDLINE | ID: mdl-34938072

ABSTRACT

BACKGROUND: Intracerebral hemorrhage (ICH) is a form of severe stroke, the pathology of which is tied closely to a recently discovered form of programmed cell death known as ferroptosis. Curcumin (Cur) is a common phenolic compound extracted from the rhizome of Curcuma longa capable of hematoma volume and associated neurological damage in the context of ICH. Despite exhibiting therapeutic promise, the efficacy of Cur is challenged by its poor water solubility, limited oral bioavailability and inability to efficiently transit across the physiological barriers. Polymer-based nanoparticles (NPs) have widely been employed to aid in drug delivery efforts owing to their ideal biocompatibility and their ability to improve the bioavailability and pharmacokinetics of specific drugs of interest. METHODS: In this study, we encapsulated Cur in NPs (Cur-NPs) and explored the effect of these Cur-NPs to enhance Cur delivery both in vitro and in vivo. Furthermore, we evaluated the anti-ferroptosis effect of Cur-NPs in ICH model mice and erastin-treated HT22 murine hippocampal cells. RESULTS: The resultant Cur-NPs were spherical and exhibited a particle size of 127.31±2.73 nm, a PDI of 0.21±0.01 and a zeta potential of -0.25±0.02 mV. When applied to Madin Darby canine kidney (MDCK) cells in vitro, these Cur-NPs were nonspecifically internalized via multiple endocytic pathways, with plasma membrane microcapsules and clathrin-mediated uptake being the dominant mechanisms. Within cells, these NPs accumulated in lysosomes, endoplasmic reticulum and mitochondria. Cur-NPs were capable of passing through physiological barriers in a zebrafish model system. When administrated to C57BL/6 mice, they significantly improved Cur delivery to the brain. Most notably, when administered to ICH model mice, Cur-NPs achieved superior therapeutic outcomes relative to other treatments. In a final series of experiments, these Cur-NPs were shown to suppress erastin-induced ferroptosis in HT22 murine hippocampal cells. CONCLUSION: These Cur-NPs represent a promising means of improving Cur delivery to the brain and thereby better treating ICH.


Subject(s)
Curcumin , Ferroptosis , Nanoparticles , Animals , Cerebral Hemorrhage , Curcumin/pharmacology , Dogs , Drug Delivery Systems , Mice , Mice, Inbred C57BL , Particle Size , Zebrafish
2.
Front Oncol ; 11: 736431, 2021.
Article in English | MEDLINE | ID: mdl-34646778

ABSTRACT

Complex heterogeneity is an important characteristic in the development of prostate cancer (PCa), which further leads to the failure of known therapeutic options. PCa research has been hampered by the current in vitro model systems that cannot fully reflect the biological characteristics and clinical diversity of PCa. The tumor organoid model in three-dimensional culture retains the heterogeneity of primary tumor tissues in vitro well and enables high-throughput screening and genome editing. Therefore, the establishment of a PCa organoid model that recapitulates the diverse heterogeneity observed in clinical settings is of great significance for the study of PCa. In this review, we summarize the culture conditions, establishments, and limitations of PCa organoids and further review their application for the study of pathogenesis, drug screening, mechanism of drug resistance, and individualized treatment for PCa. Additionally, we look forward to other potential developmental directions of PCa organoids, such as the interaction between prostate cancer tumor cells and their microenvironment, clinical individualized treatments, heterogeneous transformation model, tumor immunotherapy, and organoid models combined with liquid biopsy. Through this, we provide more effective preclinical experimental schemes using the PCa organoid model.

3.
Front Pharmacol ; 12: 629379, 2021.
Article in English | MEDLINE | ID: mdl-33815110

ABSTRACT

Intracerebral hemorrhage (ICH) is a subtype of stroke characterized by high mortality and disability rates. To date, the exact etiology of ICH-induced brain injury is still unclear. Moreover, there is no effective treatment to delay or prevent disease progression currently. Increasing evidence suggests that ferroptosis plays a dominant role in the pathogenesis of ICH injury. Baicalin is a main active ingredient of Chinese herbal medicine Scutellaria baicalensis. It has been reported to exhibit neuroprotective effects against ICH-induced brain injury as well as reduce iron deposition in multiple tissues. Therefore, in this study, we focused on the protective mechanisms of baicalin against ferroptosis caused by ICH using a hemin-induced in vitro model and a Type IV collagenase-induced in vivo model. Our results revealed that baicalin enhanced cell viability and suppressed ferroptosis in rat pheochromocytoma PC12 cells treated with hemin, erastin and RSL3. Importantly, baicalin showed anti-ferroptosis effect on primary cortical neurons (PCN). Furthermore, baicalin alleviated motor deficits and brain injury in ICH model mice through inhibiting ferroptosis. Additionally, baicalin existed no obvious toxicity towards the liver and kidney of mice. Evidently, ferroptosis is a key pathological feature of ICH and baicalin can prevent the development of ferroptosis in ICH. As such, baicalin is a potential therapeutic drug for ICH treatment.

4.
Nanoscale ; 13(6): 3827-3840, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33565555

ABSTRACT

Intracerebral hemorrhage (ICH) is a neurological disorder resulting from the nontraumatic rupture of blood vessels in the brain. Ferroptosis is a newly identified form of programmed cell death, which is an important pathological feature of ICH injury. At present, the therapeutic efficacy of ICH treatment is far from satisfactory, so it is urgent to develop a safer and more effective method to treat ICH injury. Resveratrol (Res), a widely used nonflavonoid polyphenol compound, plays a neuroprotective role in many diseases. However, its poor oral bioavailability limits its clinical application in ICH. Polymer nanoparticles (NPs) are a commonly used drug delivery matrix material with good biocompatibility. To improve its bioavailability and accumulation in the brain, we used NPs to encapsulate Res. These spherical Res nanoparticles (Res-NPs) had a particle size of 297.57 ± 7.07 nm, a PDI of 0.23 ± 0.02 and a zeta potential of -5.45 ± 0.27 mV. They could be taken up by Madin-Darby canine kidney (MDCK) cells through a variety of nonspecific endocytosis mechanisms, mainly mediated by clathrin and plasma membrane microcapsules. After entering the cell, Res-NPs tend to accumulate in the endoplasmic reticulum and lysosomes. In a zebrafish model, we observed that Res-NPs could transport across physiological barriers. In a Sprague-Dawley (SD) rat model, we found that Res-NPs had more desirable improvements in Res accumulation within the plasma and brain. Moreover, we demonstrated that Res-NPs were able to inhibit ferroptosis induced by erastin in HT22 mouse hippocampal cells, which are commonly used in in vitro studies to examine neuronal differentiation and neurotoxicity implicated in brain injuries or neurological diseases. Finally, in an ICH mouse model, we confirmed that Res-NPs are a safer and effective treatment for ICH injury. Collectively, Res-NPs are effective to improve Res brain delivery and its therapeutic efficacy in ICH treatment.


Subject(s)
Nanoparticles , Zebrafish , Animals , Brain , Cerebral Hemorrhage/drug therapy , Dogs , Mice , Rats , Rats, Sprague-Dawley , Resveratrol
SELECTION OF CITATIONS
SEARCH DETAIL
...