Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunol Res ; 2024: 8757860, 2024.
Article in English | MEDLINE | ID: mdl-38799118

ABSTRACT

Methods: 44 OSF patients and 44 healthy volunteers were included in this study. To detect the expression frequency of HLA-DQB1 alleles in the two groups and analyze significant allelic subtypes and their relative risk, polymerase chain reaction (PCR) sequence-specific primers were used. Subsequently, based on the identification of differential genes, we compare the gene expression levels of OSF patients and healthy volunteers expressing differential genes by real-time quantitative PCR. Results: The expression frequency of the HLA-DQB1 ∗05 : 02 allele in the OSF group (36.4%) was significantly higher than in the controls (13.6%), and exposure to the HLA-DQB1 ∗05 : 02 allele was strongly related to OSF (OR (95% CI) = 3.619 (1.257,10.421), Wald χ2 = 5.681, P=0.017). However, there were no significant differences in the allele expression frequencies of DQB1 ∗02 : 01, DQB1 ∗03 : 03, DQB1 ∗05 : 01, DQB1 ∗05 : 03, DQB1 ∗06 : 02, DQB1 ∗06 : 03, and DQB1 ∗06 : 04 in the OSF group compared with the controls (all P > 0.05). Furthermore, the relative expression level of the HLA-DQB1 ∗05 : 02 allele in the OSF group (3.98 ± 3.50) was significantly higher than in controls (0.70 ± 0.41). Conclusions: There are differences in the HLA-DQB1 allele polymorphisms between the healthy population and patients with oral submucosal fibrosis. Preliminarily, it is suggested that the HLA-DQB1 ∗05 : 02 allele, which has a strong correlation with OSF and great differential expression between patients with OSF and controls, might be a susceptibility gene for OSF in Hunan.


Subject(s)
Alleles , Gene Frequency , Genetic Predisposition to Disease , HLA-DQ beta-Chains , Oral Submucous Fibrosis , Polymorphism, Genetic , Humans , HLA-DQ beta-Chains/genetics , Male , Female , China/epidemiology , Adult , Middle Aged , Oral Submucous Fibrosis/genetics , Genotype , Case-Control Studies , Young Adult , Genetic Association Studies
2.
Drug Des Devel Ther ; 17: 3085-3101, 2023.
Article in English | MEDLINE | ID: mdl-37854130

ABSTRACT

Purpose: Arecoline is one of the main toxic components of arecoline to cause oral mucosal lesions or canceration, which seriously affects the survival and life quality of patients. This study analyzed the mechanism of Jiawei Danxuan Koukang (JDK) in alleviating arecoline induced oral mucosal lesions, to provide new insights for the treatment of oral submucosal fibrosis (OSF) or cancerosis. Methods: Metabolomics was applied to analyze the composition of JDK and serum metabolites. The active ingredients of JDK were analyzed by the combined ultra-high performance liquid chromatography and mass spectrometry. The target network of JDK, metabolites and OSF was analyzed by network pharmacology, and molecular docking. Oral mucosal lesions and fibrosis were analyzed by HE and Masson staining. Cell differentiation, proliferation and apoptosis were detected. The expressions of α-SMA, Collagen I, Vimentin, Snail, E-cadherin, AR and NOTCH1 were detected by Western blot. Results: Arecoline induced the gradual atrophy and thinning of rat oral mucosal, collagen accumulation, the increase expressions of fibrosis-related proteins and Th17/Treg ratio. JDK inhibited arecoline-induced oral mucosal lesions and inflammatory infiltration. Arecoline induced changes of serum metabolites in Aminoacyl-tRNA biosynthesis, Alanine, aspartate and glutamate metabolism and Arginine biosynthesis pathways, which were reversed by M-JDK. Quercetin and AR were the active ingredients and key targets of JDK, metabolites and OSF interaction. Arecoline promoted the expression of AR protein, and the proliferation of oral fibroblasts. Quercetin inhibited the effect of arecoline on oral fibroblasts, but was reversed by AR overexpression. Arecoline induced NOTCH1 expression in CAL27 and SCC-25 cells, and promoted cell proliferation, but was reversed by M-JDK or quercetin. Conclusion: JDK improved the arecoline-induced OSF and serum metabolite functional pathway. Quercetin targeted AR protein to improve arecoline-induced OSF. JDK and quercetin inhibited arecoline-induced NOTCH1 protein expression in CAL27 and SCC-25 cells to play an anti-oral cancer role.


Subject(s)
Arecoline , Oral Submucous Fibrosis , Humans , Rats , Animals , Arecoline/adverse effects , Chromatography, High Pressure Liquid , Network Pharmacology , Molecular Docking Simulation , Quercetin/pharmacology , Oral Submucous Fibrosis/etiology , Oral Submucous Fibrosis/metabolism , Oral Submucous Fibrosis/pathology , Mouth Mucosa/pathology , Fibroblasts , Collagen/pharmacology , Fibrosis , Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...