Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; 12(9): 1916-1924, 2019 May 08.
Article in English | MEDLINE | ID: mdl-30571851

ABSTRACT

Bismuth vanadate (BiVO4 ) is promising for solar-assisted water splitting. The performance of BiVO4 is limited by charge separation for >70 nm films or by light harvesting for <700 nm films. To resolve this mismatch, host-guest architectures use thin film coatings on 3D scaffolds. Recombination, however, is exacerbated at the extended host-guest interface. Underlayers are used to limit this recombination with a host-underlayer-guest series. Such underlayers consume precious pore volume where typical SnO2 underlayers are optimized with 65-80 nm. In this study, conformal and ultrathin SnO2 underlayers with low defect density are produced by atomic layer deposition (ALD). This shifts the optimized thickness to just 8 nm with significantly improved space efficiency. The materials chemistry thus determines the dimension optimization. Lastly, host-guest architectures are shown to have an applied bias photon-to-charge efficiency of 0.71 %, a new record for a photoanode absorber prepared by ALD.

2.
ACS Appl Mater Interfaces ; 9(13): 11356-11362, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28326767

ABSTRACT

The performance of BiVO4 photoanodes, especially under front-side illumination, is limited by the modest charge transport properties of BiVO4. Core/shell nanostructures consisting of BiVO4 coated onto a conductive scaffold are a promising route to improving the performance of BiVO4-based photoanodes. Here, we investigate photoanodes composed of thin and uniform layers of BiVO4 particles coated onto Sb-doped SnO2 (Sb:SnO2) nanotube arrays that were synthesized using a sacrificial ZnO template with controllable length and packing density. We demonstrate a new record for the product of light absorption and charge separation efficiencies (ηabs × Î·sep) of ∼57.3 and 58.5% under front- and back-side illumination, respectively, at 0.6 VRHE. Moreover, both of these high ηabs × Î·sep efficiencies are achieved without any extra treatment or intentional doping in BiVO4. These results indicate that integration of Sb:SnO2 nanotube cores with other successful strategies such as doping and hydrogen treatment can increase the performance of BiVO4 and related semiconductors closer to their theoretical potential.

3.
ACS Appl Mater Interfaces ; 9(2): 1459-1470, 2017 Jan 18.
Article in English | MEDLINE | ID: mdl-27991759

ABSTRACT

Metal oxides with moderate band gaps are desired for efficient production of hydrogen from sunlight and water via photoelectrochemical (PEC) water splitting. Here, we report an α-SnWO4 photoanode synthesized by hydrothermal conversion of WO3 films that achieves photon to current conversion at wavelengths up to 700 nm (1.78 eV). This photoanode is promising for overall PEC water-splitting because the flat-band potential and voltage of photocurrent onset are more negative than the potential of hydrogen evolution. Furthermore, the photoanode utilizes a large portion of the solar spectrum. However, the photocurrent density reaches only a small fraction of that which is theoretically possible. Density functional theory based thermodynamic and electronic structure calculations were performed to elucidate the nature and impact of defects in α-SnWO4 prepared by this synthetic route, from which hole localization at Sn-at-W antisite defects was determined to be a likely cause for the poor photocurrent. Measurements further showed that the photocurrent decreases over time due to surface oxidation, which was suppressed by improving the kinetics of hole transfer at the semiconductor/electrolyte interface. Alternative synthetic methods and the addition of protective coatings and/or oxygen evolution catalysts are suggested to improve the PEC performance and stability of this promising α-SnWO4 material.

4.
Sci Rep ; 6: 27832, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27271194

ABSTRACT

Mo17O47 nanowire-arrays are promising active materials and electrically-conductive supports for batteries and other devices. While high surface area resulting from long, thin, densely packed nanowires generally leads to improved performance in a wide variety of applications, the Mo17O47 nanowire-arrays synthesized previously by electrically-heated chemical vapor deposition under vacuum conditions were relatively thick and short. Here, we demonstrate a method to grow significantly thinner and longer, densely packed, high-purity Mo17O47 nanowire-arrays with diameters of 20-60 nm and lengths of 4-6 µm on metal foil substrates using rapid atmospheric flame vapor deposition without any chamber or walls. The atmospheric pressure and 1000 °C evaporation temperature resulted in smaller diameters, longer lengths and order-of-magnitude faster growth rate than previously demonstrated. As explained by kinetic and thermodynamic calculations, the selective synthesis of high-purity Mo17O47 nanowires is achieved due to low oxygen partial pressure in the flame products as a result of the high ratio of fuel to oxidizer supplied to the flame, which enables the correct ratio of MoO2 and MoO3 vapor concentrations for the growth of Mo17O47. This flame synthesis method is therefore a promising route for the growth of composition-controlled one-dimensional metal oxide nanomaterials for many applications.

5.
Nano Lett ; 16(6): 3463-74, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27203779

ABSTRACT

BiVO4 has become the top-performing semiconductor among photoanodes for photoelectrochemical water oxidation. However, BiVO4 photoanodes are still limited to a fraction of the theoretically possible photocurrent at low applied voltages because of modest charge transport properties and a trade-off between light absorption and charge separation efficiencies. Here, we investigate photoanodes composed of thin layers of BiVO4 coated onto Sb-doped SnO2 (Sb:SnO2) nanorod-arrays (Sb:SnO2/BiVO4 NRAs) and demonstrate a high value for the product of light absorption and charge separation efficiencies (ηabs × Î·sep) of ∼51% at an applied voltage of 0.6 V versus the reversible hydrogen electrode, as determined by integration of the quantum efficiency over the standard AM 1.5G spectrum. To the best of our knowledge, this is one of the highest ηabs × Î·sep efficiencies achieved to date at this voltage for nanowire-core/BiVO4-shell photoanodes. Moreover, although WO3 has recently been extensively studied as a core nanowire material for core/shell BiVO4 photoanodes, the Sb:SnO2/BiVO4 NRAs generate larger photocurrents, especially at low applied voltages. In addition, we present control experiments on planar Sb:SnO2/BiVO4 and WO3/BiVO4 heterojunctions, which indicate that Sb:SnO2 is more favorable as a core material. These results indicate that integration of Sb:SnO2 nanorod cores with other successful strategies such as doping and coating with oxygen evolution catalysts can move the performance of BiVO4 and related semiconductors closer to their theoretical potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...