Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(27): 13404-13413, 2019 07 02.
Article in English | MEDLINE | ID: mdl-31213539

ABSTRACT

BRUCE/Apollon is a membrane-associated inhibitor of apoptosis protein that is essential for viability and has ubiquitin-conjugating activity. On initiation of apoptosis, the ubiquitin ligase Nrdp1/RNF41 promotes proteasomal degradation of BRUCE. Here we demonstrate that BRUCE together with the proteasome activator PA28γ causes proteasomal degradation of LC3-I and thus inhibits autophagy. LC3-I on the phagophore membrane is conjugated to phosphatidylethanolamine to form LC3-II, which is required for the formation of autophagosomes and selective recruitment of substrates. SIP/CacyBP is a ubiquitination-related protein that is highly expressed in neurons and various tumors. Under normal conditions, SIP inhibits the ubiquitination and degradation of BRUCE, probably by blocking the binding of Nrdp1 to BRUCE. On DNA damage by topoisomerase inhibitors, Nrdp1 causes monoubiquitination of SIP and thus promotes apoptosis. However, on starvation, SIP together with Rab8 enhances the translocation of BRUCE into the recycling endosome, formation of autophagosomes, and degradation of BRUCE by optineurin-mediated autophagy. Accordingly, deletion of SIP in cultured cells reduces the autophagic degradation of damaged mitochondria and cytosolic protein aggregates. Thus, by stimulating proteasomal degradation of LC3-I, BRUCE also inhibits autophagy. Conversely, SIP promotes autophagy by blocking BRUCE-dependent degradation of LC3-I and by enhancing autophagosome formation and autophagic destruction of BRUCE. These actions of BRUCE and SIP represent mechanisms that link the regulation of autophagy and apoptosis under different conditions.


Subject(s)
Autophagy , Calcium-Binding Proteins/metabolism , Inhibitor of Apoptosis Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Animals , Apoptosis , Autophagosomes/metabolism , DNA Damage , Fibroblasts , Gene Knockdown Techniques , HEK293 Cells , Humans , Mice , Ubiquitination
2.
Yi Chuan ; 34(5): 609-14, 2012 May.
Article in Chinese | MEDLINE | ID: mdl-22659433

ABSTRACT

The cDNA Djtry, encoding a planarian trypsin, was identified from the cDNA library of Dugesia japonica. Multiple alignment analysis showed that the Tryps_SPc domain contained the incompletely conserved catalytic triad in which the first amino acid His was substituted by Lys. Phylogenetic analysis indicateed that Djtry protein falls at the base of other animal trypsins. The Djtry cDNA was cloned into a bacterial vector pET-28a and was transferred into E. coli BL21. The His-tagged Djtry fusion protein expression was induced by IPTG. SDS-PAGE analysis revealed that the Djtry was expressed as inclusion bodies in E. coli BL21 with the estimated molecular weight of approximately 26 kDa. Western blotting with His-tag antibody showed that the antibody was reacted with the fusion protein after refolding. Compared to bovine trypsin using BAEE as special substrate of trypsin, the enzyme activity of Djtry was measured. These results indicate that Djtry represents the archetype of animal trypsins, and this type of mutational trypsin Djtry still performs the trypsin nature with slightly weaker activity.


Subject(s)
Planarians/enzymology , Trypsin/genetics , Trypsin/metabolism , Amino Acid Sequence , Animals , Molecular Sequence Data , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/isolation & purification , Trypsin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...