Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Math Biosci Eng ; 20(4): 6912-6931, 2023 02 08.
Article in English | MEDLINE | ID: mdl-37161134

ABSTRACT

PURPOSE: Accurate retinal vessel segmentation is of great value in the auxiliary screening of various diseases. However, due to the low contrast between the ends of the branches of the fundus blood vessels and the background, and the variable morphology of the optic disc and cup in the retinal image, the task of high-precision retinal blood vessel segmentation still faces difficulties. METHOD: This paper proposes a multi-scale integrated context network, MIC-Net, which fully fuses the encoder-decoder features, and extracts multi-scale information. First, a hybrid stride sampling (HSS) block was designed in the encoder to minimize the loss of helpful information caused by the downsampling operation. Second, a dense hybrid dilated convolution (DHDC) was employed in the connection layer. On the premise of preserving feature resolution, it can perceive richer contextual information. Third, a squeeze-and-excitation with residual connections (SERC) was introduced in the decoder to adjust the channel attention adaptively. Finally, we utilized a multi-layer feature fusion mechanism in the skip connection part, which enables the network to consider both low-level details and high-level semantic information. RESULTS: We evaluated the proposed method on three public datasets DRIVE, STARE and CHASE. In the experimental results, the Area under the receiver operating characteristic (ROC) and the accuracy rate (Acc) achieved high performances of 98.62%/97.02%, 98.60%/97.76% and 98.73%/97.38%, respectively. CONCLUSIONS: Experimental results show that the proposed method can obtain comparable segmentation performance compared with the state-of-the-art (SOTA) methods. Specifically, the proposed method can effectively reduce the small blood vessel segmentation error, thus proving it a promising tool for auxiliary diagnosis of ophthalmic diseases.


Subject(s)
Retinal Vessels , Semantics , Retinal Vessels/diagnostic imaging , ROC Curve
2.
Math Biosci Eng ; 19(2): 1426-1447, 2022 01.
Article in English | MEDLINE | ID: mdl-35135211

ABSTRACT

This paper proposes an improved ResU-Net framework for automatic liver CT segmentation. By employing a new loss function and data augmentation strategy, the accuracy of liver segmentation is improved, and the performance is verified on two public datasets LiTS17 and SLiver07. Firstly, to speed up the convergence of the model, the residual module is used to replace the original convolution module of U-Net. Secondly, to suppress the problem of pixel imbalance, the opposite number of Dice is proposed to replace the cross-entropy loss function, and the morphological method is introduced to weigh the pixels. Finally, to improve the generalization ability of the model, random affine transformation and random elastic deformation are employed for data augmentation. From 20 training datasets of Sliver07, 16 sets were selected as the training set, two sets were used for verification, and two sets were used for the test; meanwhile, from 131 training datasets of LiTS2017, eight sets were selected as the test set. In the experiment, four evaluation metrics, including DICE global, DICE per case, VOE, and RVD, were calculated, with the accuracies of 94.28, 94.24 ± 2.07, 10.83 ± 3.70, and -0.25 ± 2.74, respectively. Compared with U-Net and ResU-Net, the performance of the proposed method is significantly improved. The experimental results show that, although the method's complexity is high, it has a faster convergence speed and stronger generalization ability. The segmentation effect on the 2D image is significantly improved, and the scalability on 3D data is also robust. In addition, the proposed method performs well in the case of low-contrast neighboring organs, which proves the robustness of the proposed method.


Subject(s)
Image Processing, Computer-Assisted , Liver Neoplasms , Disease Progression , Humans , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...