Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Comput Assist Radiol Surg ; 18(1): 117-125, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36190616

ABSTRACT

PURPOSE: Articulated hand pose tracking is an under-explored problem that carries the potential for use in an extensive number of applications, especially in the medical domain. With a robust and accurate tracking system on surgical videos, the motion dynamics and movement patterns of the hands can be captured and analyzed for many rich tasks. METHODS: In this work, we propose a novel hand pose estimation model, CondPose, which improves detection and tracking accuracy by incorporating a pose prior into its prediction. We show improvements over state-of-the-art methods which provide frame-wise independent predictions, by following a temporally guided approach that effectively leverages past predictions. RESULTS: We collect Surgical Hands, the first dataset that provides multi-instance articulated hand pose annotations for videos. Our dataset provides over 8.1k annotated hand poses from publicly available surgical videos and bounding boxes, pose annotations, and tracking IDs to enable multi-instance tracking. When evaluated on Surgical Hands, we show our method outperforms the state-of-the-art approach using mean Average Precision, to measure pose estimation accuracy, and Multiple Object Tracking Accuracy, to assess pose tracking performance. CONCLUSION: In comparison to a frame-wise independent strategy, we show greater performance in detecting and tracking hand poses and more substantial impact on localization accuracy. This has positive implications in generating more accurate representations of hands in the scene to be used for targeted downstream tasks.


Subject(s)
Algorithms , Hand , Humans , Hand/surgery
2.
IEEE Trans Cybern ; 47(5): 1238-1250, 2017 May.
Article in English | MEDLINE | ID: mdl-27046917

ABSTRACT

Reinforcement learning has significant applications for multiagent systems, especially in unknown dynamic environments. However, most multiagent reinforcement learning (MARL) algorithms suffer from such problems as exponential computation complexity in the joint state-action space, which makes it difficult to scale up to realistic multiagent problems. In this paper, a novel algorithm named negotiation-based MARL with sparse interactions (NegoSIs) is presented. In contrast to traditional sparse-interaction-based MARL algorithms, NegoSI adopts the equilibrium concept and makes it possible for agents to select the nonstrict equilibrium-dominating strategy profile (nonstrict EDSP) or meta equilibrium for their joint actions. The presented NegoSI algorithm consists of four parts: 1) the equilibrium-based framework for sparse interactions; 2) the negotiation for the equilibrium set; 3) the minimum variance method for selecting one joint action; and 4) the knowledge transfer of local Q -values. In this integrated algorithm, three techniques, i.e., unshared value functions, equilibrium solutions, and sparse interactions are adopted to achieve privacy protection, better coordination and lower computational complexity, respectively. To evaluate the performance of the presented NegoSI algorithm, two groups of experiments are carried out regarding three criteria: 1) steps of each episode; 2) rewards of each episode; and 3) average runtime. The first group of experiments is conducted using six grid world games and shows fast convergence and high scalability of the presented algorithm. Then in the second group of experiments NegoSI is applied to an intelligent warehouse problem and simulated results demonstrate the effectiveness of the presented NegoSI algorithm compared with other state-of-the-art MARL algorithms.

SELECTION OF CITATIONS
SEARCH DETAIL
...