Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
ACS Appl Mater Interfaces ; 13(15): 18021-18032, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-33844500

ABSTRACT

Fabrication of metal nanoparticle (NP)-based strain sensors with both a broad working range and linearity range is still a significant challenge. Typically, homogeneous conductive percolation networks are indispensable for linear sensing performance, whereas inhomogeneous microstructures may inevitably arise under large strain due to the formation of defects in rigid NPs. In this study, a sandwich-structured strain sensor with an extraordinarily large stretchability (800%) yet self-healing property is fabricated by three-dimensional printing using a liquid metal-like Ag NP ink. The strain sensor shows an initial conductivity of 248 S cm-1, a good linearity in two strain ranges, and a long-term stability after undergoing 5000 cycles under a strain level of 100%. Such highly comprehensive sensing performance is attributed to the unique structure of the Ag NP ink, in which Ag NPs coalesce together after room-temperature sintering triggered by chlorides, and then, the sintered Ag aggregates tend to form continuous conductive networks through hydrogen bonds between polyacrylic acid and carboxymethylcellulose. Further, the free flow of Ag aggregates is the root cause that leads to the change of relative resistance as demonstrated by finite element simulation. This Ag NP-based strain sensor shows high potential for application in monitoring human knuckle motion.

2.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 47(4): 225-8, 2012 Apr.
Article in Chinese | MEDLINE | ID: mdl-22800701

ABSTRACT

OBJECTIVE: To identify the site of crack initiation and propagation path of clinically failed all ceramic crowns by fractographic analysis. METHODS: Three clinically failed anterior IPS Empress II crowns and two anterior In-Ceram alumina crowns were retrieved. Fracture surfaces were examined using both optical stereo and scanning electron microscopy. Fractographic theory and fracture mechanics principles were applied to disclose the damage characteristics and fracture mode. RESULTS: All the crowns failed by cohesive failure within the veneer on the labial surface. Critical crack originated at the incisal contact area and propagated gingivally. Porosity was found within the veneer because of slurry preparation and the sintering of veneer powder. CONCLUSIONS: Cohesive failure within the veneer is the main failure mode of all ceramic crown. Veneer becomes vulnerable when flaws are present. To reduce the chances of chipping, multi-point occlusal contacts are recommended, and layering and sintering technique of veneering layer should also be improved.


Subject(s)
Ceramics , Crowns , Dental Restoration Failure , Dental Veneers , Dental Porcelain , Equipment Failure Analysis , Humans , Microscopy, Electron, Scanning , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...