Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Animals (Basel) ; 13(24)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38136906

ABSTRACT

In this study, sRNA libraries and mRNA libraries of HFs of FMD were constructed and sequenced using an Illumina HiSeq 2500, and the expression profiles of miRNAs and genes in the HFs of FMD were obtained at the anagen and catagen stages. In total, 565 differentially expressed unigenes (DEGs) were identified, 90 of which were upregulated and 475 of which were downregulated. In the BP category of GO enrichment, the DEGs were enriched in the processes related to HF development and differentiation, including the hair cycle regulation and processes, HF development, skin epidermis development, regulation of HF development, skin development, the Wnt signaling pathway, and the BMP signaling pathway. Through KEGG analysis it was found that DEGs were significantly enriched in pathways associated with HF development and growth. A total of 186 differentially expressed miRNAs (DEmiRNAs) were screened (p < 0.05) in the HFs of FMD at the anagen stage vs. the catagen stage, 33 of which were upregulated and 153 of which were downregulated. Through DEmiRNA-mRNA association analysis, we found DEmiRNAs and target genes that mainly play regulatory roles in HF development and growth. The enrichment analysis of DEmiRNA target genes revealed similarities with the enrichment results of DEGs associated with HF development. Notably, both sets of genes were enriched in key pathways such as the Notch signaling pathway, melanogenesis, the cAMP signaling pathway, and cGMP-PKG. To validate our findings, we selected 11 DEGs and 11 DEmiRNAs for experimental verification using RT-qPCR. The results of the experimental validation were consistent with the RNA-Seq results.

2.
Front Pharmacol ; 14: 1277395, 2023.
Article in English | MEDLINE | ID: mdl-37954839

ABSTRACT

Background: P. polyphylla var. yunnanensis, as a near-threatened and ethnic medicine in China, used to be a key ingredient in traditional Chinese medicine in treatment of traumatic injuries, sore throat, snakebites, and convulsions for thousands of years. However, there were no reports on the inverse relationship between the contents of heavy metals and saponins and its anti-breast cancer pharmacological activity in P. polyphylla var. yunnanensis. Methods: The present study aimed to reveal the characteristics of heavy metal contents and saponins and its anti-breast cancer pharmacological activity and their interrelationships in P. polyphylla var. yunnanensis from different production areas. The contents of heavy metal and steroidal saponins in P. polyphylla var. yunnanensis were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and the high-performance liquid chromatography technique, respectively. The Pearson correlation was used to study the correlation between saponins and heavy metals. 4T1 mouse mammary tumor cells were selected and cultivated for antitumor studies in vitro. Cell Counting Kit-8 (CCK-8) assay, Hoechst staining, and flow cytometry analysis were used for the examination of the proliferation and apoptosis of 4T1 tumor cells. Mouse breast cancer 4T1 cells were subcutaneously injected into BALB/c mice to construct a tumor model to explore the in vivo inhibitory effect on breast cancer. TUNEL assay and immunohistochemistry were used for the examination of the effect of P. polyphylla var. yunnanensis from different origins on cancer cell proliferation and apoptosis induction in 4T1 tumor mice. Results: Heavy metal contents were highly correlated with the content of steroidal saponins. The overall content of 10 metals in the three producing origins was of the order C3 >C2 >C1. The total content of eight steroidal saponins in the extracts of P. polyphylla var. yunnanensis from three different origins was C1 >C2 >C3. The Pearson correlation study showed that in all of the heavy metals, the contents of Cd and Ba were positively correlated with the main steroidal saponins in P. polyphylla var. yunnanensis, while Al, Cr, Cu, Fe, Zn, As, Hg, and Pb showed a negative correlation. In vitro experiments showed that the extracts of P. polyphylla var. yunnanensis from three origins could inhibit the proliferation and induce cell apoptosis of 4T1 cells in a concentration- and time-dependent manner, especially in the C1 origin. In vivo experiments showed that the extract of P. polyphylla var. yunnanensis from the three origins could inhibit the growth of tumors and induce the apoptosis of tumor cells. In the three origins, C1 origin had the lowest total heavy metal level but the highest total steroidal saponin level. Therefore, it showed a better effect in reducing the expression of the human epidermal growth factor receptor 2 (HER2) and Kiel 67 (Ki67) and increasing the expression of p53 in tumor tissues compared to the other origins. In conclusion, in the three origins, C1 origin exhibits antitumor pharmacological effects in vivo and in vitro which are better than those in the other origins. Conclusion: In this study, we found that with the increase of the heavy metal content, the content of steroid saponins and anti-breast cancer activity decreased. The results showed that the high content of the total heavy metals may not be conducive to the accumulation of steroidal saponins in P. polyphylla var. yunnanensis and lead to the low anti-breast cancer activity. The results of this study suggest that the content of heavy metals should be controlled in the artificial cultivation process of P. polyphylla var. yunnanensis.

3.
Opt Express ; 31(20): 32900-32908, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859082

ABSTRACT

In this paper, we use a pair of self-resonating subwavelength spoof plasmonic structures to achieve remote non-radiative terahertz wireless power transfer, while nearly without affecting the electromagnetic environment of free space around the structure. The resonating frequency and quality factor of the magnetic dipole mode supported by the spoof plasmonic structures can be freely tuned by tailoring the geometric structure. By putting the weak source and detector into the self-resonating structures, we can find that the effective non-radiative terahertz power transferring distance can reach several hundred times the radius of the structures. Finally, we also demonstrate the efficient wireless power transfer capability for the multi-target receiving system. These results may provide a novel approach to the design of non-radiative terahertz wireless power transfer and communications.

4.
Foods ; 12(17)2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37685196

ABSTRACT

High activity of lipoxygenase (LOX) has been identified as a primary cause of oxidative rancidity in legumes. In this study, the application of dielectric barrier discharge atmospheric cold plasma (DBD-ACP) (5 W, 10 min) resulted in an obvious decrease in LOX activity in mung bean (MB), kidney bean (KB), and adzuki bean (AB) flours by 36.96%, 32.49%, and 28.57%, respectively. Moreover, DBD-ACP induced significant increases (p < 0.05) in content of soluble dietary fiber, saturated fatty acids, and methionine. The starch digestibility of legumes was changed, evidenced by increased (p < 0.05) slowly digestible starch and rapidly digestible starch, while resistant starch decreased. Furthermore, DBD-ACP treatment significantly affected (p < 0.05) the hydration and thermal characteristics of legume flours, evidenced by the increased water absorption index (WAI) and gelatinization temperature, and the decreased swelling power (SP) and gelatinization enthalpy (ΔH). Microscopic observations confirmed that DBD-ACP treatment caused particle aggregation.

5.
Genes (Basel) ; 14(9)2023 09 02.
Article in English | MEDLINE | ID: mdl-37761894

ABSTRACT

Paris polyphylla var. yunnanensis is a well-known medicinal plant that is mainly distributed in Southwest China; however, its genetic diversity and biodiversity processes are poorly understood. In this study, the sequences of cpDNA trnL-trnF fragments of 15 wild populations and 17 cultivated populations of P. polyphylla var. yunnanensis were amplified, sequenced, and aligned to study the population genetics of this species. Genetic diversity was analyzed based on nucleotide diversity, haplotype diversity, Watterson diversity, population-level diversity, and species-level genetic diversity. Genetic structure and genetic differentiation were explored using haplotype distribution maps and genetic distance matrices. A total of 15 haplotypes were identified in the 32 populations of P. polyphylla var. yunnanensis. Five unique haplotypes were identified from the fourteen haplotypes of the cultivated populations, while only one unique haplotype was identified from the ten haplotypes of the wild populations. The haplotype richness and genetic diversity of the cultivated populations were higher than those of the wild populations (HT = 0.900 vs. 0.861). In addition, there were no statistically significant correlations between geographic distance and genetic distance in the cultivated populations (r = 0.16, p > 0.05), whereas there was a significant correlation between geographical distance and genetic structure in the wild populations (r = 0.32, p > 0.05), indicating that there was a geographical and genetic connection between the wild populations. There was only 2.5% genetic variation between the wild populations and cultivated populations, indicating no obvious genetic differentiation between the wild and cultivated populations. Overall, the genetic background of the cultivated populations was complex, and it was hypothesized that the unique haplotypes and higher diversity of the cultivated populations were caused by the mixed provenance of the cultivated populations.


Subject(s)
Ascomycota , Coleoptera , Liliaceae , Animals , Biodiversity , China , DNA, Chloroplast/genetics , Liliaceae/genetics
6.
Plants (Basel) ; 12(11)2023 May 29.
Article in English | MEDLINE | ID: mdl-37299122

ABSTRACT

Polygonum cuspidatum, an important medicinal plant, is rich in resveratrol and polydatin, but it frequently suffers from drought stress in the nursery stage, which inhibits the plant's growth, active components concentrations, and the price of rhizome in the later stage. The purpose of this study was to analyze how exogenous 100 mM melatonin (MT) (an indole heterocyclic compound) affected biomass production, water potential, gas exchange, antioxidant enzyme activities, active components levels, and resveratrol synthase (RS) gene expression of P. cuspidatum seedlings growing under well-watered and drought stress conditions. The 12-week drought treatment negatively affected the shoot and root biomass, leaf water potential, and leaf gas exchange parameters (photosynthetic rate, stomatal conductance, and transpiration rate), whereas the application of exogenous MT significantly increased these variables of stressed and non-stressed seedlings, accompanied by higher increases in the biomass, photosynthetic rate, and stomatal conductance under drought versus well-watered conditions. Drought treatment raised the activities of superoxide dismutase, peroxidase, and catalase in the leaves, while the MT application increased the activities of the three antioxidant enzymes regardless of soil moistures. Drought treatment reduced root chrysophanol, emodin, physcion, and resveratrol levels, while it dramatically promoted root polydatin levels. At the same time, the application of exogenous MT significantly increased the levels of the five active components, regardless of soil moistures, with the exception of no change in the emodin under well-watered conditions. The MT treatment also up-regulated the relative expression of PcRS under both soil moistures, along with a significantly positive correlation between the relative expression of PcRS and resveratrol levels. In conclusion, exogenous MT can be employed as a biostimulant to enhance plant growth, leaf gas exchange, antioxidant enzyme activities, and active components of P. cuspidatum under drought stress conditions, which provides a reference for drought-resistant cultivation of P. cuspidatum.

7.
Plant Signal Behav ; 18(1): 2203571, 2023 12 31.
Article in English | MEDLINE | ID: mdl-37128906

ABSTRACT

As a kind of medicinal plant, Peucedanum praeruptorum Dunn has been over-harvested in the wild population, which leads to its artificial cultivation. The present study aims to analyze the effects of different plant growth-promoting rhizobacteria (PGPR) on the growth and physiological characteristics of P. Praeruptorum leaves. Compared with the CK, the content of malondialdehyde (MDA) was drastically reduced in the leaves of P. Praeruptorum in different treatment groups (P < 0.05), and with S6 showing the most significant reduction in MDA content (content was only about 1/3 that of the CK). The indicators of leaf area, length and width were found to be the highest in group S9, reaching a level that is 3.75, 3.08 and 1.48 times higher than those in group CK, respectively. Group S8 has the largest plant height, which is 1.22 times higher than that in group CK. S2 has the largest stem diameter, which is 1.69 times higher than that in group CK. Group S1 has the largest petiole length, which is 1.74 times higher than that in group CK. Group S6 has the largest chlorophyll content, which is 1.63 times higher than that in group CK. Group S2 has the highest content of soluble sugar and soluble protein, which are 2.02 times and 3.82 times higher than those in group CK. Group S9 exhibits the strongest CAT activity, which is 3.71 times higher than that in group CK. S5 exhibits the strongest SOD activity, which is 2.32 times higher than group CK. Group S1 exhibits the strongest POD activity, which is 5.94 times higher than that in group CK. In conclusion, the inoculation with PGPR is effective in improving the growth of P. Praeruptorum leaves and their physiological indicators, which provides guidance on the application of PGPR to achieve the high quality and yield of P. Praeruptorum.


Subject(s)
Plant Leaves , Plant Leaves/metabolism
8.
Gut Microbes ; 15(1): 2190304, 2023.
Article in English | MEDLINE | ID: mdl-36941563

ABSTRACT

BACKGROUND: With increasing knowledge about the gut - bone axis, more studies for treatments based on the regulation of postmenopausal osteoporosis by gut microbes are being conducted. Based on our previous work, this study was conducted to further investigate the therapeutic effects of Lactobacillus rhamnosus GG (LGG) on ovariectomized (OVX) model rats and the immunological and microecological mechanisms involved. RESULTS: We found a protective effect of LGG treatment in OVX rats through changes in bone microarchitecture, bone biomechanics, and CTX-I, PINP, Ca, and RANKL expression levels. LGG was more advantageous in promoting osteogenesis, which may be responsible for the alleviation of osteoporosis. Th17 cells were imbalanced with Treg cells in mediastinal lymph nodes and bone marrow, with RORγt and FOXP3 expression following a similar trend. TNF-α and IL-17 expression in colon and bone marrow increased, while TGF-ß and IL-10 expression decreased; however, LGG treatment modulated these changes and improved the Th17/Treg balance significantly. Regarding the intestinal barrier, we found that LGG treatment ameliorated estrogen deficiency-induced inflammation and mucosal damage and increased the expression of GLP-2 R and tight junction proteins. Importantly, 16S rRNA sequencing showed a significant increase in the Firmicutes/Bacteroidetes ratio during estrogen deficiency. Dominant intestinal flora showed significant differences in composition; LGG treatment regulated the various genera that were imbalanced in OVX, along with modifying those that did not change significantly in other groups with respect to the intestinal barrier, inflammation development, and bile acid metabolism. CONCLUSIONS: Overall, LGG ameliorated estrogen deficiency-induced osteoporosis by regulating the gut microbiome and intestinal barrier and stimulating Th17/Treg balance in gut and bone.


Subject(s)
Gastrointestinal Microbiome , Lacticaseibacillus rhamnosus , Osteoporosis , Probiotics , Rats , Animals , T-Lymphocytes, Regulatory , Th17 Cells , RNA, Ribosomal, 16S , Osteoporosis/therapy , Estrogens , Inflammation
9.
Plants (Basel) ; 12(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36771715

ABSTRACT

Paris polyphylla var. yunnanensis, a medicinal plant that originated in Yunnan (China), has been over-harvested in the wild population, resulting in its artificial cultivation. Given the negative environmental impacts of the excessive use of phosphorus (P) fertilization, the application of organophosphate-degrading bacteria (OPDB) is a sustainable approach for improving the P use efficiency in Paris polyphylla var. yunnanensis production. The present work aimed to analyze the effects of three organic phosphate-solubilizing bacteria of Bacillus on the yield and quality of P. polyphylla var. yunnanensis and the P concentrations in the soil. All the inoculation treatments distinctly increased the rhizome biomass, steroidal, and total saponin concentrations of the rhizomes and the Olsen-P and organic P in the soil. The highest growth rate of rhizomes biomass, steroidal saponins, available phosphorus, and total phosphorus content was seen in the S7 group, which was inoculated with all three OPDB strains, showing increases of 134.58%, 132.56%, 51.64%, and 17.19%, respectively. The highest total saponin content was found in the group inoculated with B. mycoides and B. wiedmannii, which increased by 33.68%. Moreover, the highest organic P content was seen in the group inoculated with B. wiedmannii and B. proteolyticus, which increased by 96.20%. In addition, the rhizome biomass was significantly positively correlated with the saponin concentration, together with the positive correlation between the Olsen-P and organic P and total P. It is concluded that inoculation with organophosphate-degrading bacteria improved the biomass and medicinal ingredients of the rhizome in P. polyphylla var. yunnanensis, coupled with increased soil P fertility, with a mixture of the three bacteria performing best.

10.
Food Funct ; 14(3): 1773-1784, 2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36723159

ABSTRACT

High-intensity ultrasonication (HIU) is an emerging technology for improving the functional properties of the leguminous proteins in the food industry. In this study, chickpea protein (CP) was treated at 150 W for 30 min to obtain ultrasonic chickpea protein (UCP). The physicochemical (particle size, ζ-potential, hydrophobicity, and free sulfhydryl) and structural properties (FTIR) were changed after the HIU treatment, which led to an improvement of functional properties, including the solubility, emulsifying, and foamability in UCP. The chickpea protein diet (CPD) and ultrasound chickpea protein diet (UCPD) were supplemented to undernourished weaning rats to assess their potential in improving malnutrition. After 6 weeks of administration, the body weight of malnourished rats in UCPD increased by 11.97% compared with that in CPD. The results in OMICS showed that beneficial bacteria and short-chain fatty acids were positively related to growth. This work demonstrated the physicochemical and functional properties of CP and UCP and guided the application of the UCP to malnutrition improvement.


Subject(s)
Cicer , Malnutrition , Animals , Rats , Ultrasonic Waves , Solubility , Hydrophobic and Hydrophilic Interactions
11.
Sci Rep ; 12(1): 22544, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581656

ABSTRACT

Rhizospheric microorganisms can profoundly influence the nutritional status of soil and the growth of plant. To reveal the change on the bacterial diversity in the rhizosphere of Fritillaria taipaiensis under long-term single planting, the bacterial community structure in the rhizospheric soils of F. taipaiensis with different cultivation years from 1 to 5 were analyzed. The result showed the Chao1 and the ACE indices of the bacterial community had no significant difference among samples while the Shannon and Simpson indices declined with the cutivation year; the intra group beta diversity of the rhizospheric bacteria increased after a initial decline with the cultivation year; in the sample with 1 year of cultivation, the dominant bacterial genera were mainly the species that can improve the soil nutrient status and promote plant growth while with the increase of cultivation year, the dominant genera in samples then gradually reflected the pathogen accumulation and soil nutrient status deterioration; pH was the most significant factor affected by the bacterial community composition. These results indicated long term continuous cropping changed the bacterial community structure and soil nutritional status in the F. taipaiensis rhizospheric soils, which could badly affect its growth.


Subject(s)
Fritillaria , Soil Microbiology , Bacteria , Soil/chemistry , Rhizosphere
12.
Front Nutr ; 9: 1014862, 2022.
Article in English | MEDLINE | ID: mdl-36330141

ABSTRACT

Pomegranate peel (PoP) contains plenty of bioactive compounds and exhibits strong activity to prevent postprandial hyperglycaemia and improve diabetes mellitus. Presently, bioaffinity ultrafiltration coupled with high performance liquid chromatography-electrospray ionization mass spectrometry (HPLC-ESI-MS/MS) is employed to screen and identify the efficient α-glucosidase inhibitors in PoP and the detailed inhibitory mechanisms are further investigated. The results show that many substances, including ellagic acid, kaempferol, gallic acid, and resveratrol in PoP reveal strong activity to inhibit α-glucosidase and ellagic acid (EA) is screened as the most effective compound. Further research indicates that EA plays a competitive and reversible inhibition role against α-glucosidase with the value of Ki was 6.24 × 105 mol/L. EA also directly interacts with the amino acids of α-glucosidase mainly via van der Waals forces and hydrogen bonds, thereby, influencing the secondary structure and stability of α-glucosidase. Finally, the α-glucosidase inhibitory activity of EA is further confirmed to significantly reduce postprandial blood glucose in vivo.

13.
Front Bioeng Biotechnol ; 10: 1054757, 2022.
Article in English | MEDLINE | ID: mdl-36420438

ABSTRACT

The soil's rhizosphere is a highly active place where the exchange of substances and information occurs among plants, soils, and microorganisms. The microorganisms involved are crucial to the activities of plant growth and development, metabolism, and reproduction. Fritillaria L. medicinal plants are unique Chinese medicinal ingredients, but the continuous cropping obstacles formed in the artificial planting process is severely harmful to the growth and development of these medicinal plants. In this review, we summarized the current species and distribution of Fritillaria L. in China, and analyzed the changes in microbial diversity (mainly among bacteria and fungi) in the rhizosphere of these plants under long-term continuous cropping. The fungi showed an increasing trend in the soil rhizosphere, resulting in the transition of the soil from the high-fertility "bacterial type" to the low-fertility "fungal type" as planting years increased. Furthermore, the interaction between Fritillaria L. medicinal plants and the rhizosphere microorganisms was reviewed, and promising applications for the rhizosphere microbiome in the cultivation of Fritillaria L. medicinal plants were suggested. It is expected that this review will facilitate the in-depth understanding of rhizosphere microorganisms in the growth, accumulation of active ingredients, and disease control of Fritillaria L.

14.
Front Nutr ; 9: 966705, 2022.
Article in English | MEDLINE | ID: mdl-36185682

ABSTRACT

Chickpea (Cicer arietinum L.) is a well-known legume widely used as traditional medicine. This study aimed to characterize the structure and evaluate the immunomodulatory activity of one glycoprotein [crude chickpea glycoprotein-1 (CAG-1)] isolated from chickpea. CAG-1 was extracted with hot alkaline water and purified with DEAE-Sepharose Fast Flow and Superdex-200 column chromatography. CAG-1, with a molecular weight of 8,106 Da, contained 57.12% polysaccharide and 35.41% protein. The polysaccharide part was mainly composed of glucose (Glc). The protein part was connected mainly by aspartic (Asp) and glutamic (Glu). The results of nuclear magnetic resonance (NMR) analysis indicated the presence of α-d-Glcp-(1 → 4)-α-d-Glcp-(1 → 4)-α-d-Glcp-(1 → . In addition, the sugar chains of the glycoprotein were not hydrolyzed under alkaline conditions, suggesting that the glycoprotein was N-glycosidic; thus, the sugar chain was linked to the protein chain by Asp. An immunological study showed that CAG-1 stimulated the production of nitric oxide (NO), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and monocyte chemotactic protein 1 (MCP-1) in RAW 264.7 macrophages in a dose-dependent manner.

15.
Front Microbiol ; 13: 1006140, 2022.
Article in English | MEDLINE | ID: mdl-36160193

ABSTRACT

The medicinal plant Polygonum cuspidatum Sieb. Et Zucc is rich in stilbenes (e.g., polygonin and resveratrol) and anthraquinones (e.g., emodin) for the therapy of human diseases, while how to increase the growth and medicinal composition concentrations of P. cuspidatum has become an urgent issue. The aim of the present study was to evaluate the effects of inoculation with an arbuscular mycorrhizal (AM) fungus, Funneliformis mosseae, on plant growth, phosphorus (P) acquisition, medicinal component concentrations, and expressions of resveratrol synthesis-associated enzyme genes of P. cuspidatum at two P levels (0 M and 0.2 M). P supply (0.2 M) stimulated root AM fungal colonization rate. F. mosseae inoculation significantly improved growth performance (height, diameter, and biomass) and root morphology (diameter, length, and projected area), irrespectively of substrate P levels. P supply and F. mosseae distinctly increased soil acid and neutral phosphatase activities, as well as root P concentrations. P supply increased root physcion and resveratrol concentrations in inoculated and uninoculated plants, along with up-regulated expressions of PcCHS1, PcCRS1, PcRS11, and PcSTS. AM plants represented significantly higher root aloe-emodin, chrysophanol, emodin, physcion, polydatin, and resveratrol concentrations than non-AM plants irrespective of P levels, coupled with up-regulated expressions of PcCHS1, PcCHS2, PcRS11, PcRS, and PcSTS. It is concluded that 0.2 M P supply and F. mosseae inoculation promoted chrysophanol, physcion, polydatin, and resveratrol concentrations of P. cuspidatum, with the increase in resveratrol associated with up-regulated expressions of related genes.

16.
Mitochondrial DNA B Resour ; 7(8): 1445-1447, 2022.
Article in English | MEDLINE | ID: mdl-35965647

ABSTRACT

Mallotus paniculatus (Lam.) Müll. Arg. 1865 (Euphorbiaceae) is a shrub or small tree with medicinal properties that is distributed across Southeast Asia. In this study, we sequenced the complete chloroplast genome of M. paniculatus to study phylogenetic relationships within the family Euphorbiaceae Juss. The complete chloroplast genome of M. paniculatus was 164,455 bp in length, with an overall GC content of 35.3%. It was found to consist of a long single copy region of 89,021 bp, a small single copy region of 18,524 bp, and a pair of inverted repeats of 28,455 bp. Results indicated that the chloroplast genome contains a total of 131 genes, including 78 protein-coding genes, 37 tRNA genes, eight rRNA genes, and eight pseudogenes. The phylogenetic tree showed that M. paniculatus is closely related to Mallotus japonicus and Mallotus peltatus.

17.
Brain Imaging Behav ; 16(5): 2001-2010, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35997922

ABSTRACT

Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe autoimmune disease that is commonly accompanied by cognitive impairment and various neurological and psychiatric symptoms, advanced image analyses help explore the pathogenesis of this disease. Therefore, this study aimed to explore specific structural and functional alterations and their relationship with the clinical symptoms of anti-NMDAR encephalitis. In this study, twenty-two patients with anti-NMDAR encephalitis after the acute stage and 29 controls received cognitive assessments and magnetic resonance imaging. Grey matter atrophy was measured using voxel-based morphometry, and functional alterations in abnormal regions were subsequently investigated using resting state functional connectivity (RSFC). Finally, correlation analyses were performed to explore the associations between imaging alterations and cognitive assessments. The patients demonstrated significant gray matter atrophy in the bilateral triangle part of the inferior frontal gyrus (triIFG.L and triIFG.R) and right precuneus, decreased RSFC between triIFG.L and bilateral Heschl gyrus (HES), decreased RSFC between triIFG.R and HES.R, decreased RSFC between right precuneus and left cerebellum, and increased RSFC between triIFG.R and left superior frontal gyrus. Further correlation analyses showed that the gray matter volume in triIFG.R and decreased RSFC between triIFG.L and HES.R were associated with decreased memory scores, whereas decreased RSFC between triIFG.R and HES.R was marginally correlated with the disease course in patients. In conclusion, this study suggests that cognitive impairments in patients with anti-NMDAR encephalitis may be mainly associated with gray matter atrophy and abnormal RSFC in the triIFG. These findings provide new insights into anti-NMDAR encephalitis pathogenesis and help explore potential treatments.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Gray Matter , Humans , Gray Matter/pathology , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnostic imaging , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/pathology , Magnetic Resonance Imaging/methods , Atrophy/pathology , Image Processing, Computer-Assisted
18.
Front Bioeng Biotechnol ; 10: 937266, 2022.
Article in English | MEDLINE | ID: mdl-35795166

ABSTRACT

Calcium-containing cellulose-based composites possess the advantages of high mechanical strength, excellent osteoconductivity, biocompatibility, biodegradation, and bioactivity, which represent a promising application system in the biomedical field. Calcium-containing cellulose-based composites have become the hotspot of study of various biomedical fields. In this mini-review article, the synthesis of calcium-containing cellulose-based composites is summarized via a variety of methods such as the biomimetic mineralization method, microwave method, co-precipitation method, hydrothermal method, freeze-drying method, mechanochemical reaction method, and ultrasound method. The development on the fabrication, properties, and applications of calcium-containing cellulose-based composites is highlighted. The as-existed problems and future developments of cellulose-based composites are provided. It is expected that calcium-containing cellulose-based composites are the ideal candidate for biomedical application.

19.
Front Chem ; 10: 834154, 2022.
Article in English | MEDLINE | ID: mdl-35559219

ABSTRACT

The electrochemical behavior and direct quantitative determination of paclitaxel, a poorly soluble drug made into microemulsion, were researched by cyclic voltammetry in acetate buffer solutions (pH = 4.0) at a glassy carbon electrode. The results show that the oxidation process is irreversible and controlled by diffusion. Moreover, the effects of anodic peak current (Ipa), anodic peak potential, scan rate, pH, and the electrochemical redox mechanism have been studied. The anodic peak current varied linearly with paclitaxel concentration in the range of 5 × 10-5 mol/L to 5 × 10-4 mol/L, and the detection limit was 9.15 × 10-8 mol/L. The results of RSD (0.90%) and recovery (99.22%-101.69%) were obtained. Additionally, it has been proved that one electron and one proton are involved in the electrochemical redox process. The present research has been successfully used to determine paclitaxel in pure and real samples, which further supported the electrochemical behavior investigation of paclitaxel and direct determination of micro-emulsion.

20.
Front Bioeng Biotechnol ; 10: 891034, 2022.
Article in English | MEDLINE | ID: mdl-35497333

ABSTRACT

In recent years, faced with the improvement of environmental quality problems, cellulose and cellulose-based (nano) composites have attracted great attention as adsorbents. In this review article, we first report the recent progress of modification and functionalization of cellulose adsorbents. In addition, the adsorbents produced by the modification and functionalization of carboxymehyl cellulose are also introduced. Moreover, the cellulose-based (nano) composites as adsorbents are reviewed in detail. Finally, the development prospect of cellulose and cellulose-based (nano) composites is studied in the field of the environment. In this review article, a critical comment is given based on our knowledge. It is believed that these biomass adsorbents will play an increasingly important role in the field of the environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...