Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Sci Rep ; 14(1): 9886, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688995

ABSTRACT

Dual-energy cone beam computed tomography (DE-CBCT) has been shown to provide more information and improve performance compared to a conventional single energy spectrum CBCT. Here we report a low-cost DE-CBCT by spectral filtration of a carbon nanotube x-ray source array. The x-ray photons from two focal spots were filtered respectively by a low and a high energy filter. Projection images were collected by alternatively activating the two beams while the source array and detector rotated around the object, and were processed by a one-step materials decomposition and reconstruction method. The performance of the DE-CBCT scanner was evaluated by imaging a water-equivalent plastic phantom with inserts containing known densities of calcium or iodine and an anthropomorphic head phantom with dental implants. A mean energy separation of 15.5 keV was achieved at acceptable dose rates and imaging time. Accurate materials quantification was obtained by materials decomposition. Metal artifacts were reduced in the virtual monoenergetic images synthesized at high energies. The results demonstrated the feasibility of high quality DE-CBCT imaging by spectral filtration without using either an energy sensitive detector or rapid high voltage switching.

2.
Phys Med Biol ; 69(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38471174

ABSTRACT

Cone beam computed tomography (CBCT) is known to suffer from strong scatter and cone beam artifacts. The purpose of this study is to develop and characterize a rapidly scanning carbon nanotube (CNT) field emission x-ray source array to enable a multisource CBCT (ms-CBCT) image acquisition scheme which has been demonstrated to overcome these limitations. A CNT x-ray source array with eight evenly spaced focal spots was designed and fabricated for a medium field of view ms-CBCT for maxillofacial imaging. An external multisource collimator was used to confine the radiation from each focal spot to a narrow cone angle. For ms-CBCT imaging, the array was placed in the axial direction and rapidly scanned while rotating continuously around the object with a flat panel detector. The x-ray beam profile, temporal and spatial resolutions, energy and dose rate were characterized and evaluated for maxillofacial imaging. The CNT x-ray source array achieved a consistent focal spot size of 1.10 ± 0.04 mm × 0.84 ± 0.03 mm and individual beam cone angle of 2.4°±0.08 after collimation. The x-ray beams were rapidly switched with a rising and damping times of 0.21 ms and 0.19 ms, respectively. Under the designed operating condition of 110 kVp and 15 mA, a dose rate of 8245µGy s-1was obtained at the detector surface with the inherent Al filtration and 2312µGy s-1with an additional 0.3 mm Cu filter. There was negligible change of the x-ray dose rate over many operating cycles. A ms-CBCT scan of an adult head phantom was completed in 14.4 s total exposure time for the imaging dose in the range of that of a clinical CBCT scanner. A spatially distributed CNT x-ray source array was designed and fabricated. It has enabled a new multisource CBCT to overcome some of the main inherent limitations of the conventional CBCT.


Subject(s)
Nanotubes, Carbon , X-Rays , Cone-Beam Computed Tomography/methods , Tomography, X-Ray Computed/methods , Phantoms, Imaging
3.
Sci Rep ; 14(1): 3887, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38366012

ABSTRACT

Multisource cone beam computed tomography CBCT (ms-CBCT) has been shown to overcome some of the inherent limitations of a conventional CBCT. The purpose of this study was to evaluate the accuracy of ms-CBCT for measuring the bone mineral density (BMD) of mandible and maxilla compared to the conventional CBCT. The values measured from a multi-detector CT (MDCT) were used as substitutes for the ground truth. An anthropomorphic adult skull and tissue equivalent head phantom and a homemade calibration phantom containing inserts with varying densities of calcium hydroxyapatite were imaged using the ms-CBCT, the ms-CBCT operating in the conventional single source CBCT mode, and two clinical CBCT scanners at similar imaging doses; and a clinical MDCT. The images of the anthropomorphic head phantom were reconstructed and registered, and the cortical and cancellous bones of the mandible and the maxilla were segmented. The measured CT Hounsfield Unit (HU) and Greyscale Value (GV) at multiple region-of-interests were converted to the BMD using scanner-specific calibration functions. The results from the various CBCT scanners were compared to that from the MDCT. Statistical analysis showed a significant improvement in the agreement between the ms-CBCT and MDCT compared to that between the CBCT and MDCT.


Subject(s)
Bone Density , Spiral Cone-Beam Computed Tomography , Head , Skull , Cone-Beam Computed Tomography/methods , Phantoms, Imaging
4.
Phys Med Biol ; 68(17)2023 08 14.
Article in English | MEDLINE | ID: mdl-37487498

ABSTRACT

Objective. The aim of this study was to investigate the feasibility of improving the image quality and accuracy of cone beam computed tomography (CBCT) by replacing the conventional wide cone angle x-ray tube with a distributed x-ray source array positioned in the axial direction.Approach. The multisource CBCT (ms-CBCT) design was experimentally simulated using a benchtop scanner with a carbon nanotube x-ray tube and a flat-panel detector. The source was collimated and translated in the axial direction to simulate a source array with a reduced cone angle for each beam. An adjacent scatter ratio subtraction (ASRS) method was implemented for residual scatter reduction. Several phantoms were imaged using the ms-CBCT and conventional CBCT configurations under otherwise similar conditions. The Requirements of the ms-CBCT design on the x-ray source and detector were evaluated.Main results. Compared to the conventional CBCT, the ms-CBCT design with 8 sources and ASRS significantly improved the image quality and accuracy, including: (1) reducing the cupping artifact from 15% to 3.5%; (2) reducing the spatial nonuniformity of the CT Hounsfield unit values from 38.0 to 9.2; (3) improving the contrast-to-noise ratio of the low contrast objects (acrylic and low density polyethylene inserts) against the water-equivalent background by ∼20% and (4) reducing the root-mean-square error of the HU values by 70%, from 420.1 to 124.4. The imaging dose and scanning time used by the current clinical CBCT for maxillofacial imaging can be achieved by current source and detector technologies.Significance. The ms-CBCT design significantly reduces the scatter and improves the image quality and accuracy compared to the conventional CBCT.


Subject(s)
Spiral Cone-Beam Computed Tomography , Feasibility Studies , Cone-Beam Computed Tomography/methods , Phantoms, Imaging , Fluoroscopy , Scattering, Radiation
5.
Commun Eng ; 2(1)2023.
Article in English | MEDLINE | ID: mdl-38549919

ABSTRACT

Cone beam computed tomography (CBCT) is widely used in medical and dental imaging. Compared to a multidetector CT, it provides volumetric images with high isotropic resolution at a reduced radiation dose, cost and footprint without the need for patient translation. The current CBCT has several intrinsic limitations including reduced soft tissue contrast, inaccurate quantification of X-ray attenuation, image distortions and artefacts, which have limited its clinical applications primarily to imaging hard tissues and made quantitative analysis challenging. Here we report a multisource CBCT (ms-CBCT) which overcomes the short-comings of the conventional CBCT by using multiple narrowly collimated and rapidly scanning X-ray beams from a carbon nanotube field emission source array. Phantom imaging studies show that, the ms-CBCT increases the accuracy of the Hounsfield unit values by 60%, eliminates the cone beam artefacts, extends the axial coverage, and improves the soft tissue contrast-to-noise ratio by 30-50%, compared to the CBCT configuration.

6.
Pediatr Blood Cancer ; 69(10): e29773, 2022 10.
Article in English | MEDLINE | ID: mdl-35615775

ABSTRACT

BACKGROUND: Children develop symptomatic coronavirus disease 2019 (COVID-19) more rarely than adults upon infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Pediatric oncology and hematology patients may be at increased risk of severe COVID-19 due to their underlying disease or treatment. We investigated COVID-19 and seroprevalence of anti-SARS-CoV-2 antibodies, respectively, in a Swedish cohort of pediatric oncology and hematology patients. PROCEDURE: Patients (n = 136) were recruited between June 2020 and September 2021 at Uppsala University Children's Hospital, Sweden. Up to six consecutive blood samples per patient were analyzed for wild-type anti-S1 IgM and IgG antibodies (including after vaccination, n = 4). Clinical data on COVID-19 (including polymerase chain reaction [PCR] test results) were collected from electronic medical records. A questionnaire was completed at recruitment. RESULTS: A cumulative seroprevalence (IgM and IgG) of 33% (45/136 patients, 95% confidence interval: 25%-41%) was observed in this patient cohort, of whom 66% (90/136 patients) were under severe immunosuppressive treatment during the study period. Increasing patient age (p = .037) and PCR test results (p < .002) were associated with seropositivity in nonvaccinated cases. Most seropositive, nonvaccinated cases (32/43, 74%) were never PCR-verified for SARS-CoV-2 infection. Of the 13 patients with PCR-verified infection, nine (69%) reported mild disease. A majority (63%) reported continued school attendance during the pandemic. CONCLUSIONS: Swedish pediatric oncology and hematology patients developed antibodies against SARS-CoV-2, despite their diagnosis and/or treatment, and the observed seroprevalence was similar to that in national pediatric outpatients. PCR-verified cases underestimate the true incidence of COVID-19 in this patient cohort.


Subject(s)
COVID-19 , Hematology , Neoplasms , Adult , Antibodies, Viral , COVID-19/epidemiology , Child , Humans , Immunoglobulin G , Immunoglobulin M , Neoplasms/epidemiology , SARS-CoV-2 , Seroepidemiologic Studies , Sweden/epidemiology
7.
J Thorac Dis ; 14(2): 257-268, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35280479

ABSTRACT

Background: Screen detected and incidental pulmonary nodules are increasingly common. Current guidelines recommend tissue sampling of solid nodules >8 mm. Bronchoscopic biopsy poses the lowest risk but is paired with the lowest diagnostic yield when compared to CT-guided biopsy or surgery. A need exists for a safe, mobile, low radiation dose, intra-procedural method to localize biopsy instruments within target nodules. This retrospective cross sectional reader feasibility study evaluates the ability of clinicians to identify pulmonary nodules using a prototype carbon nanotube radiation enabled stationary digital chest tomosynthesis system. Methods: Patients with pulmonary nodules on prior CT imaging were recruited and consented for imaging with stationary digital chest tomosynthesis. Five pulmonologists of varying training levels participated as readers. Following review of patient CT and a thoracic radiologist's interpretation of nodule size and location the readers were tasked with interpreting the corresponding tomosynthesis scan to identify the same nodule found on CT. Results: Fifty-five patients were scanned with stationary digital chest tomosynthesis. The median nodule size was 6 mm (IQR =4-13 mm). Twenty nodules (37%) were greater than 8 mm. The radiation entrance dose for s-DCT was 0.6 mGy. A significant difference in identification of nodules using s-DCT was seen for nodules <8 vs. ≥8 mm in size (57.7% vs. 90.9%, CI: -0.375, -0.024; P<0.001). Inter-reader agreement was fair, and better for nodules ≥8 mm [0.278 (SE =0.043)]. Conclusions: With system and carbon nanotube array optimization, we hypothesize the detection rate for nodules will improve. Additional study is needed to evaluate its use in target and tool co-localization and target biopsy.

8.
PLoS One ; 17(2): e0262713, 2022.
Article in English | MEDLINE | ID: mdl-35113908

ABSTRACT

Cone beam computed tomography (CBCT) is now widely used in dentistry and growing areas of medical imaging. The presence of strong metal artifacts is however a major concern of using CBCT especially in dentistry due to the presence of highly attenuating dental restorations, fixed appliances, and implants. Virtual monoenergetic images (VMIs) synthesized from dual energy CT (DECT) datasets are known to reduce metal artifacts. Although several techniques exist for DECT imaging, they in general come with significantly increased equipment cost and not available in dental clinics. The objectives of this study were to investigate the feasibility of developing a low-cost dual energy CBCT (DE-CBCT) by retrofitting a regular CBCT scanner with a carbon nanotube (CNT) x-ray source with dual focal spots and corresponding low-energy (LE) and high-energy (HE) spectral filters. A testbed with a CNT field emission x-ray source (NuRay Technology, Chang Zhou, China), a flat panel detector (Teledyne, Waterloo, Canada), and a rotating object stage was used for this feasibility study. Two distinct polychromatic x-ray spectra with the mean photon energies of 66.7keV and 86.3keV were produced at a fixed 120kVp x-ray tube voltage by using Al+Au and Al+Sn foils as the respective LE and HE filters attached to the exist window of the x-ray source. The HE filter attenuated the x-ray photons more than the LE filter. The calculated post-object air kerma rate of the HE beam was 31.7% of the LE beam. An anthropomorphic head phantom (RANDO, Nuclear Associates, Hicksville, NY) with metal beads was imaged using the testbed and the images were reconstructed using an iterative volumetric CT reconstruction algorithm. The VMIs were synthesized using an image-domain basis materials decomposition method with energy ranging from 30 to 150keV. The results were compared to the reconstructed images from a single energy clinical dental CBCT scanner (CS9300, Carestream Dental, Atlanta, GA). A significant reduction of the metal artifacts was observed in the VMI images synthesized at high energies compared to those from the same object imaged by the clinical dental CBCT scanner. The ability of the CNT x-ray source to generate the output needed to compensate the reduction of photon flux due to attenuation from the spectral filters and to maintain the CT imaging time was evaluated. The results demonstrated the feasibility of DE-CBCT imaging using the proposed approach. Metal artifact reduction was achieved in VMIs synthesized. The x-ray output needed for the proposed DE-CBCT can be generated by a fixed-anode CNT x-ray source.


Subject(s)
Nanotubes, Carbon
9.
Am J Vet Res ; 82(11): 872-879, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34669497

ABSTRACT

OBJECTIVE: To describe the technique and assess the diagnostic potential and limitations of tomosynthesis for imaging of the metacarpophalangeal joint (MCPJ) of equine cadavers; compare the tomosynthesis appearance of pathological lesions with their conventional radiographic, CT, and MRI appearances; and evaluate all imaging findings with gross lesions of a given MCPJ. SAMPLE: Distal portions of 4 forelimbs from 4 equine cadavers. PROCEDURES: The MCPJs underwent radiography, tomosynthesis (with a purpose-built benchtop unit), CT, and MRI; thereafter, MCPJs were disarticulated and evaluated for the presence of gross lesions. The ability to identify pathological lesions on all images was assessed, followed by semiobjective scoring for quality of the overall image and appearance of the subchondral bone, articular cartilage, periarticular margins, and adjacent trabecular bone of the third metacarpal bone, proximal phalanx, and proximal sesamoid bones of each MCPJ. RESULTS: Some pathological lesions in the subchondral bone of the third metacarpal bone were detectable with tomosynthesis but not with radiography. Overall, tomosynthesis was comparable to radiography, but volumetric imaging modalities were superior to tomosynthesis and radiography for imaging of subchondral bone, articular cartilage, periarticular margins, and adjacent bone. CONCLUSIONS AND CLINICAL RELEVANCE: With regard to the diagnostic characterization of equine MCPJs, tomosynthesis may be more accurate than radiography for identification of lesions within subchondral bone because, in part, of its ability to reduce superimposition of regional anatomic features. Tomosynthesis may be useful as an adjunctive imaging technique, highlighting subtle lesions within bone, compared with standard radiographic findings.


Subject(s)
Horse Diseases , Metacarpal Bones , Animals , Cadaver , Horse Diseases/diagnostic imaging , Horses , Joints/diagnostic imaging , Magnetic Resonance Imaging/veterinary , Metacarpal Bones/diagnostic imaging , Metacarpophalangeal Joint/diagnostic imaging , Tomography, X-Ray Computed/veterinary
10.
J Med Imaging (Bellingham) ; 8(5): 052114, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34692896

ABSTRACT

Purpose: The invention of carbon nanotube (CNT) x-ray source arrays has enabled the development of novel imaging systems, including stationary tomosynthesis and stationary computed tomography (CT) with fast data acquisition, mechanically robust structures, and reduced image blur from source-detector motion. In this work, we report the results of simulation studies of potential system configurations for a stationary head CT (s-HCT) using linear CNT x-ray sources and detector arrays. Approach: We explored s-HCT configurations that utilize one, two, and three linear CNT source arrays. Simulations were implemented using three digital phantoms with both CPU and GPU computing. Sinogram coverage was used for qualitative evaluation of the CT projection collection efficiency for each configuration. A modified low-contrast Shepp-Logan (SL) phantom was implemented for image quality assessment using quantitative metrics. Different iterative reconstruction (IR) methods were compared with both qualitative and quantitative assessments. Results: Sinogram coverage of s-HCT configurations was sensitive to the number of CNT source arrays and geometry. The simulations suggest that a s-HCT configuration with three planes gives near complete sinogram coverage. Such a configuration enables accurate reconstruction of the low-contrast SL phantom and considerably diminished artifacts caused by the system geometry. Conclusions: An optimized s-HCT system configuration with three linear CNT x-ray source arrays is feasible. IR algorithms can diminish artifacts caused by sparse and asymmetrical scans. The proposed s-HCT system configuration is currently under construction.

11.
Mil Med ; 186(Suppl 1): 745-750, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33499472

ABSTRACT

INTRODUCTION: Musculoskeletal injury to extremities is a common issue for both stateside and deployed military personnel, as well as the general public. Superposition of anatomy can make diagnosis difficult using standard clinical techniques. There is a need for increased diagnostic accuracy at the point-of-care for military personnel in both training and operational environments, as well as assessment during follow-up treatment to optimize care and expedite return to service. Orthopedic tomosynthesis is rapidly emerging as an alternative to digital radiography (DR), exhibiting an increase in sensitivity for some clinical tasks, including diagnosis and follow-up of fracture and arthritis. Commercially available digital tomosynthesis systems are large complex devices. A compact device for extremity tomosynthesis (TomoE) was previously demonstrated using carbon nanotube X-ray source array technology. The purpose of this study was to prepare and evaluate the prototype device for an Institutional Review Board-approved patient wrist imaging study and provide initial patient imaging results. MATERIALS AND METHODS: A benchtop device was constructed using a carbon nanotube X-ray source array and a flat panel digital detector. Twenty-one X-ray projection images of cadaveric specimens and human subjects were acquired at incident angles from -20 to +20 degrees in various clinical orientations, with entrance dose calibrated to commercial digital tomosynthesis wrist scans. The projection images were processed with an iterative reconstruction algorithm in 1 mm slices. Reconstruction slice images were evaluated by a radiologist for feature conspicuity and diagnostic accuracy. RESULTS: The TomoE image quality was found to provide more diagnostic information than DR, with reconstruction slices exhibiting delineation of joint space, visual conspicuity of trabecular bone, bone erosions, fractures, and clear depiction of normal anatomical features. The scan time was 15 seconds and the skin entrance dose was verified to be 0.2 mGy. CONCLUSIONS: The TomoE device image quality has been evaluated using cadaveric specimens. Dose was calibrated for a patient imaging study. Initial patient images depict a high level of anatomical detail and an increase in diagnostic value compared to DR.


Subject(s)
Point-of-Care Systems , Wrist , Humans , Imaging, Three-Dimensional , Radiographic Image Enhancement , Tomography, X-Ray Computed
12.
Med Phys ; 48(3): 1089-1099, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33382470

ABSTRACT

PURPOSE: Stationary computed tomography (s-CT) conceptually offers several advantages over existing rotating gantry-based CT. Over the last 40 yr, s-CT has been investigated using different technological approaches. We are developing a s-CT system specifically for head/brain imaging using carbon nanotube (CNT)-based field emission x-ray source array technology. The noncircular geometry requires different assessment approaches as compared to circular geometries. The purpose of the present study is to investigate whether the CNT source array meets the requirements for stationary head CT (s-HCT). METHODS: Multiple prototype CNT x-ray source arrays were manufactured based on the system requirements obtained from simulation. Source characterization was performed using a benchtop setup consisting of an x-ray source array with 45 distributed focal spots, each operating at 120 kVp, and an electronic control system (ECS) for high speed control of the x-ray output from individual focal spots. Due to the forward-angled geometry of the linear anode, the projected focal spot shape is expected to vary at wide angle views. A pinhole method was implemented to determine the effective focal spot size (FSS) in the imaging plane at a range of angular viewpoints with a flat panel detector. The output spectrum and half value layer (HVL) were also evaluated for a range of viewing angles to characterize the beam quality across the fan-beam. Dosimetry was performed on a simulated scan to evaluate total exposure. RESULTS: The prototype CNT x-ray source array demonstrated adequate specifications for a s-HCT imaging machine. The source array was operated at 120 kVp with long-term stability over a full year of regular laboratory use. Multiple cathode current measurements were used to confirm submicrosecond accuracy with regards to exposure time and subsequently dose control. All 45 focal spots were measured with an average value of 1.26 (±0.04) mm × 1.21 (±0.03) mm (equivalent to IEC 1,0). The x-ray spectrum was found to be appropriately filtered based on sources used in existing rotary CT systems. A stable and reliable output of 0.04 mAs per emitter and a resulting dose of 0.015 mGy per projection were observed over several months of rigorous phantom imaging. Dose per projection was regulated by the ECS and measured with ±0.5% tolerance. CONCLUSIONS: The CNT x-ray source array was found to meet the requirements for the proposed stationary head CT scanner, with regard to FSS, beam quality, and dose precision. The remaining challenges are related to the overall system design of a nonrotating CT scanner with distributed sources. The next phase of the project will incorporate multiple CNT source arrays with multirow detectors in a proof-of-concept study and analysis of a fully functional s-HCT system.


Subject(s)
Brain , Nanotubes, Carbon , Tomography, X-Ray Computed , Brain/diagnostic imaging , Humans , Neuroimaging , Phantoms, Imaging , X-Rays
13.
Dentomaxillofac Radiol ; 50(2): 20200159, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32666823

ABSTRACT

OBJECTIVES: A practical approach to three-dimensional (3D) intraoral imaging would have many potential applications in clinical dentistry. Stationary intraoral tomosynthesis (sIOT) is an experimental 3D imaging technology that holds promise. The purpose of this study was to explore synthetic radiography as a tool to improve the clinical utility of the images generated by an sIOT scan. METHODS: Extracted tooth specimens containing either caries adjacent to restorations (CAR) or vertical root fractures (VRF) were imaged by sIOT and standard dental radiography devices. Qualitative assessments were used to compare the conspicuity of these pathologies in the standard radiographs and in a set of multi-view synthetic radiographs generated from the information collected by sIOT. RESULTS: The sIOT-based synthetic 2D radiographs contained less artefact than the image slices in the reconstructed 3D stack, which is the conventional approach to displaying information from a tomosynthesis scan. As a single sIOT scan can be used to generate synthetic radiographs from multiple viewing angles, the interproximal space was less likely to be obscured in the synthetic images compared to the standard radiograph. Additionally, the multi-view synthetic radiographs can potentially improve the display of CAR and VRFs as compared to a single standard radiograph. CONCLUSIONS: This preliminary experience combining synthetic radiography and sIOT in extracted tooth models is encouraging and supports the ongoing study of this promising approach to 3D intraoral imaging with many potential applications.


Subject(s)
Dental Caries , Imaging, Three-Dimensional , Dental Caries/diagnostic imaging , Dental Clinics , Humans , Radiographic Image Enhancement , Radiography , Radiography, Dental
14.
Cancers (Basel) ; 14(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35008319

ABSTRACT

Spatially fractionated radiotherapy has been shown to have effects on the immune system that differ from conventional radiotherapy (CRT). We compared several aspects of the immune response to CRT relative to a model of spatially fractionated radiotherapy (RT), termed microplanar radiotherapy (MRT). MRT delivers hundreds of grays of radiation in submillimeter beams (peak), separated by non-radiated volumes (valley). We have developed a preclinical method to apply MRT by a commercial small animal irradiator. Using a B16-F10 murine melanoma model, we first evaluated the in vitro and in vivo effect of MRT, which demonstrated significant treatment superiority relative to CRT. Interestingly, we observed insignificant treatment responses when MRT was applied to Rag-/- and CD8-depleted mice. An immuno-histological analysis showed that MRT recruited cytotoxic lymphocytes (CD8), while suppressing the number of regulatory T cells (Tregs). Using RT-qPCR, we observed that, compared to CRT, MRT, up to the dose that we applied, significantly increased and did not saturate CXCL9 expression, a cytokine that plays a crucial role in the attraction of activated T cells. Finally, MRT combined with anti-CTLA-4 ablated the tumor in half of the cases, and induced prolonged systemic antitumor immunity.

15.
Dentomaxillofac Radiol ; 49(8): 20190504, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32202939

ABSTRACT

OBJECTIVES: This study examined the utility of stationary intraoral tomosynthesis (s-IOT) in opening proximal contacts in bitewing radiography. METHODS: 11 DENTSPLY Rinn Dental X-ray Teaching and Training Replica mannequins (Model #546002, Elgin, Ill) were imaged with a prototype s-IOT device (Surround Medical Systems, Morrisville, NC) and standard bitewing (SBW) technique. Premolar and molar bitewings were acquired with each system. Image receptor holders were used to position receptors and aid in the alignment of the position indicating devices. An expert operator (having more than 5 years of experience in intraoral radiography) acquired the images with the s-IOT prototype and standard intraoral X-ray devices. Images were assessed to analyze percentage overlap of the proximal surfaces using the tools available in ImageJ (NIH, Bethesda Maryland). RESULTS: 253-paired surfaces were included in the analysis. The difference in overlap was statistically significant with standard bitewing (SBW) images resulting in a median overlap of 13%, a minimum of 0%, a maximum of 100% and an interquartile range of 40%. s-IOT resulted in a median overlap of 1%, a minimum of 0%, a maximum of 37% and an interquartile range of 0%. The s-IOT prototype substantially reduced proximal surface overlap compared to conventional bitewing radiography. CONCLUSIONS: The use of s-IOT reduced proximal contact overlap compared to standard bitewing radiography for an experienced radiographer. Stationary intraoral tomosynthesis may be a potential alternative to SBW radiography, reducing the number of retakes due to closed contacts.


Subject(s)
Dental Caries , Bicuspid , Humans , Molar , ROC Curve , Radiography, Bitewing
16.
Acad Radiol ; 26(10): 1363-1372, 2019 10.
Article in English | MEDLINE | ID: mdl-30660473

ABSTRACT

RATIONALE AND OBJECTIVES: A linear array of carbon nanotube-enabled x-ray sources allows for stationary digital breast tomosynthesis (sDBT), during which projection views are collected without the need to move the x-ray tube. This work presents our initial clinical experience with a first-generation sDBT device. MATERIALS AND METHODS: Following informed consent, women with a "suspicious abnormality" (Breast Imaging Reporting and Data System 4), discovered by digital mammography and awaiting biopsy, were also imaged by the first generation sDBT. Four radiologists participated in this paired-image study, completing questionnaires while interpreting the mammograms and sDBT image stacks. Areas under the receiver operating characteristic curve were used to measure reader performance (likelihood of correctly identifying malignancy based on pathology as ground truth), while a multivariate analysis assessed preference, as readers compared one modality to the next when interpreting diagnostically important image features. RESULTS: Findings from 43 women were available for analysis, in whom 12 cases of malignancy were identified by pathology. The mean areas under the receiver operating characteristic curve was significantly higher (p < 0.05) for sDBT than mammography for all breast density categories and breast thicknesses. Additionally, readers preferred sDBT over mammography when evaluating mass margins and shape, architectural distortion, and asymmetry, but preferred mammography when characterizing microcalcifications. CONCLUSION: Readers preferred sDBT over mammography when interpreting soft-tissue breast features and were diagnostically more accurate using images generated by sDBT in a Breast Imaging Reporting and Data System 4 population. However, the findings also demonstrated the need to improve microcalcification conspicuity, which is guiding both technological and image-processing design changes in future sDBT devices.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast , Image Processing, Computer-Assisted/methods , Mammography , Radiographic Image Enhancement/methods , Adult , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/pathology , Female , Humans , Mammography/instrumentation , Mammography/methods , Middle Aged , Multimodal Imaging , Nanotubes, Carbon
17.
Article in English | MEDLINE | ID: mdl-33304617

ABSTRACT

PURPOSE: To assess the visibility of microcalcifications in images generated by a first-generation carbon-nanotube (CNT)-enabled stationary digital breast tomosynthesis (sDBT) device, using magnified 2D mammography and conventional, moving-source DBT as references for comparison. METHODS: Lumpectomy specimens were imaged by magnified mammography and two 3D mammography approaches, including sDBT and moving-source DBT. The planar size of individual microcalcifications was measured in the reconstructed image stacks of sDBT and moving-source DBT and compared to the magnified mammography image. An artifact spread function (ASF) was used to assess the depth dimensions of the microcalcifications displayed through the reconstructed image stacks. Breast-imaging specialists rated their preference for one imaging modality over another when interpreting microcalcifications in the magnified mammography image and synthetic slab images from sDBT and moving-source DBT. RESULTS: The planar size of individual microcalcifications was similar in images generated by sDBT and moving-source DBT when the sDBT projections were binned to match the pixel size used by the moving-source DBT system. However, the unique structure of sDBT allowed for a wider-angle span of projection views and operation of the detector in full-resolution mode without significantly compromising the scan time. In this configuration, the planar sizes of individual microcalcifications displayed by sDBT was more similar to magnified mammography than moving-source DBT, and the microcalcifications had a narrower ASF through depth. Readers preferred sDBT over moving-source DBT when assessing microcalcifications in synthetic slab images, although magnified mammography was rated highest overall. CONCLUSIONS: The sDBT system displayed microcalcifications as well as conventional, moving-source DBT when the effective pixel size of the detector was matched. However, with the detector in its full-resolution mode, sDBT displayed microcalcifications with greater clarity. Readers still preferred images generated by magnified mammography over both 3D mammography approaches. This finding is guiding continued hardware and software development to optimize the sDBT technology.

18.
Eur Radiol ; 29(4): 1665-1673, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30255248

ABSTRACT

OBJECTIVE: The imaging evaluation of cystic fibrosis currently relies on chest radiography or computed tomography. Recently, digital chest tomosynthesis has been proposed as an alternative. We have developed a stationary digital chest tomosynthesis (s-DCT) system based on a carbon nanotube (CNT) linear x-ray source array. This system enables tomographic imaging without movement of the x-ray tube and allows for physiological gating. The goal of this study was to evaluate the feasibility of clinical CF imaging with the s-DCT system. MATERIALS AND METHODS: CF patients undergoing clinically indicated chest radiography were recruited for the study and imaged on the s-DCT system. Three board-certified radiologists reviewed both the CXR and s-DCT images for image quality relevant to CF. CF disease severity was assessed by Brasfield score on CXR and chest tomosynthesis score on s-DCT. Disease severity measures were also evaluated against subject pulmonary function tests. RESULTS: Fourteen patients underwent s-DCT imaging within 72 h of their chest radiograph imaging. Readers scored the visualization of proximal bronchi, small airways and vascular pattern higher on s-DCT than CXR. Correlation between the averaged Brasfield score and averaged tomosynthesis disease severity score for CF was -0.73, p = 0.0033. The CF disease severity score system for tomosynthesis had high correlation with FEV1 (r = -0.685) and FEF 25-75% (r = -0.719) as well as good correlation with FVC (r = -0.582). CONCLUSION: We demonstrate the potential of CNT x-ray-based s-DCT for use in the evaluation of cystic fibrosis disease status in the first clinical study of s-DCT. KEY POINTS: • Carbon nanotube-based linear array x-ray tomosynthesis systems have the potential to provide diagnostically relevant information for patients with cystic fibrosis without the need for a moving gantry. • Despite the short angular span in this prototype system, lung features such as the proximal bronchi, small airways and pulmonary vasculature have improved visualization on s-DCT compared with CXR. Further improvements are anticipated with longer linear x-ray array tubes. • Evaluation of disease severity in CF patients is possible with s-DCT, yielding improved visualization of important lung features and high correlation with pulmonary function tests at a relatively low dose.


Subject(s)
Cystic Fibrosis/diagnostic imaging , Radiography, Thoracic/methods , Adult , Feasibility Studies , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Nanotubes, Carbon , Respiratory Function Tests , Severity of Illness Index , Tomography, X-Ray Computed , Young Adult
19.
Med Phys ; 45(11): 5172-5185, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30259988

ABSTRACT

PURPOSE: Technological advancements in dental radiography have improved oral care on many fronts, yet diagnostic efficacy for some of the most common oral conditions, such as caries, dental cracks and fractures, and periodontal disease, remains relatively low. Driven by the clinical need for a better diagnostic yield for these and other dental conditions, we initiated the development of a stationary intraoral tomosynthesis (s-IOT) imaging system using carbon nanotube (CNT) x-ray source array technology. Here, we report the system characterization and preliminary imaging evaluation of a clinical prototype s-IOT system approved for human use. METHODS: The clinical prototype s-IOT system is comprised of a multibeam CNT x-ray source array, high voltage generator, control electronics, collimator cone, and dynamic digital intraoral detector. During a tomosynthesis scan, each x-ray source is operated sequentially at fixed, nominal tube current of 7 mA and user-specified pulse width. Images are acquired by a digital intraoral detector and the reconstruction algorithm generates slice information in real time for operator review. In this study, the s-IOT system was characterized for tube output, dosimetry, and spatial resolution. Manufacturer specifications were validated, such as tube current, kVp, and pulse width. Tube current was measured with an oscilloscope on the analog output of the anode power supply. Pulse width, kVp, and peak skin dose were measured with a dosimeter with ion chamber and high voltage accessory. In-plane spatial resolution was evaluated via measurement of MTF and imaging of a line pair phantom. Spatial resolution in the depth direction was evaluated via artifact spread measurement. The size of the collimated radiation field was evaluated for compliance with FDA regulations. A dental phantom and human specimens of varying pathologies were imaged on a clinical 2D intraoral imaging system as well as s-IOT for comparison and to explore potential clinical applications. RESULTS: The measured tube current, kVp, and pulse width values were within 3% of the set values. A cumulative peak skin dose of 1.12 mGy was measured for one complete tomosynthesis scan using a 50-ms pulse per projection view. Projection images and reconstruction slices revealed MTF values ranging from 8.1 to 9.3 cycles/mm. Line pair imaging verified this result. The radiation field was found to meet the FDA requirements for intraoral imaging devices. Tomosynthesis reconstruction slice images of the dental phantom and human specimens provided depth resolution, allowing visibility of anatomical features that cannot be seen in the 2D intraoral images. CONCLUSIONS: The clinical prototype s-IOT device was evaluated and found to meet all manufacturer specifications. Though the system capability is higher, initial investigations are targeting a low-dose range comparable to a single 2D radiograph. Preliminary studies indicated that s-IOT provides increased image quality and feature conspicuity at a dose comparable to a single 2D intraoral radiograph.


Subject(s)
Mouth/diagnostic imaging , Tomography, X-Ray Computed/instrumentation , Artifacts , Calibration , Equipment Design , Humans , Image Processing, Computer-Assisted , Nanotubes, Carbon , Phantoms, Imaging , Tooth/diagnostic imaging
20.
J Med Imaging (Bellingham) ; 5(1): 013502, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29430472

ABSTRACT

Stationary digital breast tomosynthesis (sDBT) is an emerging technology in which the single rotating x-ray tube is replaced by a fixed array of multiple carbon nanotube-enabled sources, providing a higher spatial and temporal resolution. As such, sDBT offers a promising platform for contrast-enhanced (CE) imaging. However, given the minimal enhancement above background with standard operational tube settings and iodine dosing, CE breast imaging requires additional acquisition steps to isolate the iodine signal, using either temporal or dual energy subtraction (TS or DES) protocols. Also, correcting for factors that limit contrast is critical, and scatter and noise pose unique challenges during tomosynthesis. This phantom-based study of CE sDBT compared different postacquisition scatter correction approaches on the quality of the reconstructed image slices. Beam-pass collimation was used to sample scatter indirectly, from which an interpolated scatter map was obtained for each projection image. Scatter-corrected projections provided the information for reconstruction. Comparison between the application of different scatter maps demonstrated the significant effect that processing has on the contrast-to-noise ratio and feature detectability ([Formula: see text]) in the final displayed images and emphasized the critical importance of scatter correction during DES.

SELECTION OF CITATIONS
SEARCH DETAIL
...