Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 489, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825671

ABSTRACT

BACKGROUND: The Fructus Ligustri Lucidi, the fruit of Ligustrum lucidum, contains a variety of bioactive compounds, such as flavonoids, triterpenoids, and secoiridoids. The proportions of these compounds vary greatly during the different fruit development periods of Fructus Ligustri Lucidi. However, a clear understanding of how the proportions of the compounds and their regulatory biosynthetic mechanisms change across the different fruit development periods of Fructus Ligustri Lucidi is still lacking. RESULTS: In this study, metabolite profiling and transcriptome analysis of six fruit development periods (45 DAF, 75 DAF, 112 DAF, 135 DAF, 170 DAF, and 195 DAF) were performed. Seventy compounds were tentatively identified, of which secoiridoids were the most abundant. Eleven identified compounds were quantified by high performance liquid chromatography. A total of 103,058 unigenes were obtained from six periods of Fructus Ligustri Lucidi. Furthermore, candidate genes involved in triterpenoids, phenylethanols, and oleoside-type secoiridoid biosynthesis were identified and analyzed. The in vitro enzyme activities of nine glycosyltransferases involved in salidroside biosynthesis revealed that they can catalyze trysol and hydroxytyrosol to salidroside and hydroxylsalidroside. CONCLUSIONS: These results provide valuable information to clarify the profile and molecular regulatory mechanisms of metabolite biosynthesis, and also in optimizing the harvest time of this fruit.


Subject(s)
Fruit , Ligustrum , Metabolome , Transcriptome , Fruit/genetics , Fruit/metabolism , Fruit/chemistry , Ligustrum/genetics , Ligustrum/metabolism , Ligustrum/chemistry , Gene Expression Profiling , Gene Expression Regulation, Plant
2.
Food Chem ; 447: 139039, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38518619

ABSTRACT

Euphorbiae Humifusae Herba (EHH) was provided with medicinal and edible uses, but frequently was adulterated with its closely related species. Hence, this study sought to identify EHH via an integrated approach comprising data from its morphological evaluation, HPLC analysis, comparative plastomes analysis and allele-specific PCR identification. First, the morphological characteristics of 8 subgenus Chamaesyce plants were summarized. Then, HPLC analysis showed that 18 batches of EHH were adulterated or unqualified. Furthermore, the plastomes of the 8 subg. Chamaesyce species were analyzed. Phylogenetic analysis revealed a sister relationship among the 8 subg. Chamaesyce species. The allele-specific PCR authentication was developed by the nucleotide polymorphisms (SNPs) and insertions or deletions (InDels) analysis. The results of allele-specific PCR showed that 27 batches of EHH were adulterated, indicating that the superior sensitivity of molecular authentication over the other methods used. This study provided a reference for rational use and phylogenetic research of EHH.


Subject(s)
Euphorbia , Phylogeny , Euphorbia/classification
3.
Food Chem ; 442: 138408, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38241985

ABSTRACT

This study utilized computer vision to extract color and texture features of Pericarpium Citri Reticulatae (PCR). The ultra-fast gas-phase electronic nose (UF-GC-E-nose) technique successfully identified 98 volatile components, including olefins, alcohols, and esters, which significantly contribute to the flavor profile of PCR. Multivariate statistical Analysis was applied to the appearance traits of PCR, identifying 57 potential marker-trait factors (VIP > 1 and P < 0.05) from the 118 trait factors that can distinguish PCR from different origins. These factors include color, texture, and odor traits. By integrating multivariate statistical Analysis with the BP neural network algorithm, a novel artificial intelligence algorithm was developed and optimized for traceability of PCR origin. This algorithm achieved a 100% discrimination rate in differentiating PCR samples from various origins. This study offers a valuable reference and data support for developing intelligent algorithms that utilize data fusion from multiple intelligent sensory technologies to achieve rapid traceability of food origins.


Subject(s)
Citrus , Drugs, Chinese Herbal , Electronic Nose , Artificial Intelligence , Algorithms , Neural Networks, Computer , Computers
4.
Plant Methods ; 19(1): 88, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37626389

ABSTRACT

BACKGROUND: Glandular trichomes, often referred to as "phytochemical factories", plays a crucial role in plant growth and metabolism. As the site for secretion and storage, the development of glandular trichomes is related to the dynamic biosynthesis of specialised metabolites. The study aims to explore the relationship between spatial phenotype and dynamic metabolism of glandular trichomes, and establish a novel approach for the exploration and study of the regulatory mechanism governing the development of glandular trichomes. RESULTS: In this study, we proposed a technical route based on the relative deviation value to distinguish the peltate glandular trichomes (PGTs) from the background tissues and extract their spatial phenotype. By defining glandular trichome developmental stages based on the leaf vein growth axis, we found that young PGTs were densely distributed near the proximal end of growth axis of the leaf veins, where perillaketone, a primary metabolite of PGTs, is predominantly accumulated. Conversely, mature PGTs are typically found near the distal end of the mid-vein growth axis and the lateral end of the secondary vein growth axis, where the accumulation rate of isoegomaketone and egomaketone exceeds that of perillaketone in PGTs. We further identified spatial phenotypic parameters, Lsum and d, as independent variables to construct a linear regression model that illustrates the relationship between the spatial phenotypes and metabolite content of PGTs, including perillaketone (R2 = 0.698), egomaketone (R2 = 0.593), isoegomaketone (R2 = 0.662) and the sum of the amount (R2 = 0.773). CONCLUSIONS: This model proved that the development of PGTs was correlated with the growth of the entire leaf, and the development stage of PGTs can be identifined by spatial phenotypes based on the leaf veins. In conclusion, the findings of this study enhance our understanding of correlation between spatial phenotype and development of glandular trichomes and offer a new approach to explore and study the regulatory mechanism of glandular trichome development.

5.
BMC Plant Biol ; 23(1): 345, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37391700

ABSTRACT

BACKGROUND: Perilla frutescens is widely used as both a medicine and a food worldwide. Its volatile oils are its active ingredients, and, based on the different volatile constituents, P. frutescens can be divided into several chemotypes, with perilla ketone (PK) being the most common. However, the key genes involved in PK biosynthesis have not yet been identified. RESULTS: In this study, metabolite constituents and transcriptomic data were compared in leaves of different levels. The variation in PK levels was the opposite of that of isoegoma ketone and egoma ketone in leaves at different levels. Based on transcriptome data, eight candidate genes were identified and successfully expressed in a prokaryotic system. Sequence analysis revealed them to be double bond reductases (PfDBRs), which are members of the NADPH-dependent, medium-chain dehydrogenase/reductase (MDR) superfamily. They catalyze the conversion of isoegoma ketone and egoma ketone into PK in in vitro enzymatic assays. PfDBRs also showed activity on pulegone, 3-nonen-2-one, and 4-hydroxybenzalacetone. In addition, several genes and transcription factors were predicted to be associated with monoterpenoid biosynthesis, and their expression profiles were positively correlated with variations in PK abundance, suggesting their potential functions in PK biosynthesis. CONCLUSIONS: The eight candidate genes encoding a novel double bond reductase related to perilla ketone biosynthesis were identified in P. frutescens, which carries similar sequences and molecular features as the MpPR and NtPR from Nepeta tenuifolia and Mentha piperita, respectively. These findings not only reveal the pivotal roles of PfDBR in exploring and interpreting PK biological pathway but also contribute to facilitating future studies on this DBR protein family.


Subject(s)
Perilla frutescens , Perilla , Perilla frutescens/genetics , Perilla/genetics , Monoterpenes , Ketones , Oxidoreductases
6.
Mol Plant ; 16(3): 533-548, 2023 03 06.
Article in English | MEDLINE | ID: mdl-36609143

ABSTRACT

Biosynthetic gene clusters (BGCs) are regions of a genome where genes involved in a biosynthetic pathway are in proximity. The origin and evolution of plant BGCs as well as their role in specialized metabolism remain largely unclear. In this study, we have assembled a chromosome-scale genome of Japanese catnip (Schizonepeta tenuifolia) and discovered a BGC that contains multiple copies of genes involved in four adjacent steps in the biosynthesis of p-menthane monoterpenoids. This BGC has an unprecedented bipartite structure, with mirrored biosynthetic regions separated by 260 kilobases. This bipartite BGC includes identical copies of a gene encoding an old yellow enzyme, a type of flavin-dependent reductase. In vitro assays and virus-induced gene silencing revealed that this gene encodes the missing isopiperitenone reductase. This enzyme evolved from a completely different enzyme family to isopiperitenone reductase from closely related Mentha spp., indicating convergent evolution of this pathway step. Phylogenomic analysis revealed that this bipartite BGC has emerged uniquely in the S. tenuifolia lineage and through insertion of pathway genes into a region rich in monoterpene synthases. The cluster gained its bipartite structure via an inverted duplication. The discovered bipartite BGC for p-menthane biosynthesis in S. tenuifolia has similarities to the recently described duplicated p-menthane biosynthesis gene pairs in the Mentha longifolia genome, providing an example of the convergent evolution of gene order. This work expands our understanding of plant BGCs with respect to both form and evolution, and highlights the power of BGCs for gene discovery in plant biosynthetic pathways.


Subject(s)
Lamiaceae , Multigene Family , Monoterpenes , Chromosomes
7.
Zhongguo Zhong Yao Za Zhi ; 47(21): 5838-5848, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-36472002

ABSTRACT

Hd-Zip, a unique transcription factor in plant kingdom, influences the growth, development, and secondary metabolism of plants. Hd-zip Ⅳ is thought to play an important role in trichome development of Schizonepeta tenuifolia. This study aims to explore the functions of StHD1 and StHD8 in Hd-zip Ⅳ subfamily in peltate glandular trichome development. To be specific, the expression patterns of the two genes and interaction between the proteins encoded by them were analyzed based on transcriptome sequencing and two-hybrid screening. The subcellular localization was performed and functions of the genes were verified in tobacco and S. tenuifolia. The results showed that StHD1 and StHD8 had high similarity to HD-Zip Ⅳ proteins of other plants and they all had the characteristic conserved domains of HD-Zip Ⅳ subfamily. They were located in the nucleus. The two genes mainly expressed in young tissues and spikes, and StHD1 and StHD8 proteins interacted with each other. The density and length of glandular trichomes increased significantly in tobacco plants with the overexpression of StHD1 and StHD8. Inhibiting the expression of StHD1 and StHD8 by VIGS(virus-induced gene silencing) in S. tenuifolia resulted in the reduction in the density of peltate glandular trichomes, the expression of key genes related to mono-terpene synthesis, and the relative content of limonene and pulegone, the main components of monoterpene. These results suggested that StHD1 and StHD8 of S. tenuifolia formed a complex to regulate glandular trichomes and affect the biosynthesis of monoterpenes.


Subject(s)
Lamiaceae , Trichomes , Trichomes/genetics , Trichomes/metabolism , Lamiaceae/genetics , Nicotiana/genetics , Monoterpenes/metabolism , Cloning, Molecular , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
8.
Front Plant Sci ; 13: 988594, 2022.
Article in English | MEDLINE | ID: mdl-36340347

ABSTRACT

The peltate glandular trichomes (PGTs) on Nepeta tenuifolia leaves can secrete and store bioactive essential oils. ScRNA-seq is a powerful tool for uncovering heterogeneous cells and exploring the development and differentiation of specific cells. Due to leaves rich in PGTs, the young leaves were used to isolated protoplasts and successfully captured 33,254 protoplasts for sequencing purposes. After cell type annotation, all the cells were partitioned into six broad populations with 19 clusters. Cells from PGTs were identified based on the expression patterns of trichome-specific genes, monoterpene biosynthetic genes, and metabolic analysis of PGT secretions. The developmental trajectories of PGTs were delineated by pseudotime analysis. Integrative analysis of scRNA-seq data from N. tenuifolia leaves and Arabidopsis thaliana shoot revealed that PGTs were specific to N. tenuifolia. Thus, our results provide a promising basis for exploring cell development and differentiation in plants, especially glandular trichome initiation and development.

9.
Front Plant Sci ; 13: 936244, 2022.
Article in English | MEDLINE | ID: mdl-35968082

ABSTRACT

Nepeta tenuifolia is a medicinal plant rich in terpenoids and flavonoids with antiviral, immunoregulatory, and anti-inflammatory activities. The peltate glandular trichome (PGT) is a multicellular structure considered to be the primary storage organ for monoterpenes; it may serve as an ideal model for studying cell differentiation and the development of glandular trichomes (GTs). The genes that regulate the development of GTs have not yet been well studied. In this study, we identified NtMIXTA1, a GT development-associated gene from the R2R3 MYB SBG9 family. NtMIXTA1 overexpression in tobacco resulted in the production of longer and denser GTs. Virus-induced gene silencing of NtMIXTA1 resulted in lower PGT density, a significant reduction in monoterpene concentration, and the decreased expression of genes related to monoterpene biosynthesis. Comparative transcriptome and widely targeted metabolic analyses revealed that silencing NtMIXTA1 significantly influenced the expression of genes, and the production of metabolites involved in the biosynthesis of terpenoids, flavonoids, and lipids. This study provides a solid foundation describing a mechanism underlying the regulation of GT development. In addition, this study further deepens our understanding of the regulatory networks involved in GT development and GT development-associated metabolite flux, as well as provides valuable reference data for studying plants with a high medicinal value without genetic transformation.

10.
Front Plant Sci ; 13: 850130, 2022.
Article in English | MEDLINE | ID: mdl-35463413

ABSTRACT

The aerial parts of Agastache rugosa are rich in essential oils containing monoterpenoids, phenylpropanoids, and aromatic compounds. These are used as herbs, perfume plants, and ornamental plants. Based on the difference in the constituents of the essential oil, A. rugosa is divided into pulegone and estragole chemotypes, but the mechanism of key metabolite biosynthesis in these two A. rugosa chemotypes remains unclear. In this study, we compared the morphological differences, metabolite constituents, and transcriptomic data between the two chemotypes of A. rugosa. Monoterpenoid was the main compound in the pulegone chemotype, and phenylpropanoid was the main compound in the estragole chemotype; however, limonene was detected in both chemotypes. Furthermore, 46 genes related to pulegone and estragole biosynthesis were identified. Limonene synthase, limonene-3-hydroxylase, and isopiperitenol dehydrogenase were upregulated in the pulegone chemotype, while phenylalanine ammonia-lyase, 4-coumarate: CoA ligase, CYP73A, coumaroyl-aldehyde dehydrogenase, and eugenol synthase were downregulated in the pulegone chemotype. We identified chavicol methyl transferase and limonene-3-hydroxylase in A. rugosa. This work not only provides the difference in morphology and metabolites in pulegone and estragole chemotypes, but also offers a molecular mechanism of volatile oil biosynthesis, which could be a basis for specialized metabolites in specialized chemotypes.

11.
Zhongguo Zhong Yao Za Zhi ; 46(18): 4712-4720, 2021 Sep.
Article in Chinese | MEDLINE | ID: mdl-34581080

ABSTRACT

Leaves of Euryale ferox are rich in anthocyanins. Anthocyanin synthesis is one of the important branches of the flavonoid synthesis pathway, in which flavonoid 3'-hydroxylase(F3'H) can participate in the formation of important intermediate products of anthocyanin synthesis. According to the data of E. ferox transcriptome, F3'H cDNA sequence was cloned in the leaves of E. ferox and named as EfF3'H. The correlation between EfF3'H gene expression and synthesis of flavonoids was analyzed by a series of bioinforma-tics tools and qRT-PCR. Moreover, the biological function of EfF3'H was verified by the heterologous expression in yeast. Our results showed that EfF3'H comprised a 1 566 bp open reading frame which encoded a hydrophilic transmembrane protein composed of 521 amino acid residues. It was predicted to be located in the plasma membrane. Combined with predictive analysis of conserved domains, this protein belongs to the cytochrome P450(CYP450) superfamily. The qRT-PCR results revealed that the expression level of EfF3'H was significantly different among different cultivars and was highly correlated with the content of related flavonoids in the leaves. Eukaryotic expression studies showed that EfF3'H protein had the biological activity of converting kaempferol to quercetin. In this study, EfF3'H cDNA was cloned from the leaves of E. ferox for the first time, and the biological function of the protein was verified. It provi-ded a scientific basis for further utilizing the leaves of E. ferox and laid a foundation for the further analysis of the biosynthesis pathway of flavonoids in medicinal plants.


Subject(s)
Anthocyanins , Plant Proteins , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcriptome
13.
Plant Physiol Biochem ; 167: 31-41, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34329843

ABSTRACT

Nepeta tenuifolia Briq. (Lamiaceae) is a medicinal plant historically used in the East Asia region to treat cold and fever, and it is currently used as a clinically effective treatment for respiratory diseases. We previously found that monoterpenoids are the dominant volatile secondary metabolites in N. tenuifolia and their biosynthesis occurs in peltate glandular trichomes. To gain an insight into the molecular mechanisms underlying monoterpenoid biosynthesis in N. tenuifolia, we conducted transcriptome sequencing and examined the expression differences in monoterpene molecular pathway-related genes in different tissues and growth stages by qRT-RCR. In total, six p-menthane monoterpene biosynthetic genes in the (+)-menthone pathway were identified and cloned successfully based on transcriptome data. Moreover, the major constituents, including (+)-limonene, (-)-pulegone and (+)-menthone showed greater accumulation in the spikes than in other organs, such as the expression levels of related key enzyme genes. Additionally, the relative expression of pulegone reductase was the highest at 84 days, showing an inverse trend from (-)-pulegone relative content and leading to (+)-menthone accumulation in peltate glandular trichomes. Finished cloning of the gene for limonene 3-hydroxylase in N. tenuifolia (NtL3OH), heterologous expression in yeast, and in vitro assays were performed for functional characterization. Our study provides an important resource for further research of secondary metabolism of monoterpenes in peltate glandular trichomes of N. tenuifolia and other homologous species.


Subject(s)
Lamiaceae , Nepeta , Lamiaceae/genetics , Monoterpenes , RNA-Seq , Trichomes/genetics
14.
BMC Plant Biol ; 21(1): 277, 2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34144672

ABSTRACT

BACKGROUND: Perilla frutescens (L.) Britt is a medicinal and edible plant widely cultivated in Asia. Terpenoids, flavonoids and phenolic acids are the primary source of medicinal ingredients. Glandular trichomes with multicellular structures are known as biochemical cell factories which synthesized specialized metabolites. However, there is currently limited information regarding the site and mechanism of biosynthesis of these constituents in P. frutescens. Herein, we studied morphological features of glandular trichomes, metabolic profiling and transcriptomes through different tissues. RESULTS: Observation of light microscopy and scanning electron microscopy indicated the presence of three distinct glandular trichome types based on their morphological features: peltate, capitate, and digitiform glandular trichomes. The oil of peltate glandular trichomes, collected by custom-made micropipettes and analyzed by LC-MS and GC-MS, contained perillaketone, isoegomaketone, and egomaketone as the major constituents which are consistent with the components of leaves. Metabolomics and transcriptomics were applied to explore the bioactive constituent biosynthesis in the leaves, stem, and root of P. frutescens. Transcriptome sequencing profiles revealed differential regulation of genes related to terpenoids, flavonoids, and phenylpropanoid biosynthesis, respectively with most genes expressed highly in leaves. The genes affecting the development of trichomes were preliminarily predicted and discussed. CONCLUSIONS: The current study established the morphological and chemical characteristics of glandular trichome types of P. frutescens implying the bioactive constituents were mainly synthesized in peltate glandular trichomes. The genes related to bioactive constituents biosynthesis were explored via transcriptomes, which provided the basis for unraveling the biosynthesis of bioactive constituents in this popular medicinal plant.


Subject(s)
Perilla frutescens/chemistry , Trichomes/chemistry , Gene Expression Regulation, Plant , Microscopy, Electron, Scanning , Perilla frutescens/genetics , Perilla frutescens/ultrastructure , Plant Growth Regulators/metabolism , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Stems/chemistry , Plants, Medicinal/chemistry , Plants, Medicinal/ultrastructure , RNA, Plant , RNA-Seq , Real-Time Polymerase Chain Reaction , Transcriptome , Trichomes/ultrastructure
15.
Sci Rep ; 10(1): 2857, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32071345

ABSTRACT

The stem of Dendrobium huoshanense C.Z. Tang and S.J. Cheng was widely used as a medicinal herb in health care products due to its broad pharmacological activities. However, the molecular regulation mechanism of stem development and biosynthetic pathways of important bioactive substances are still unclear in D. huoshanense. In this study, the bioactive compounds in leaves, stems and roots, and the identification of candidate genes involved in stem formation and biosynthesis of active compounds via transcriptome sequence were analyzed. The accumulation of total polysaccharides and flavonoids were varied significantly in different tissues. A comparative transcriptomic analysis revealed several differentially expressed genes (DEGs) involved in polysaccharides biosynthesis (103 genes), including fructose and mannose related genes (29 genes) and glycosyltransferase genes (74 genes), and flavonoids biosynthesis (15 genes). Some candidate genes that participated in photoperiod regulation (27 genes), starch and sucrose metabolism (46 genes), and hormone-induced activation of signaling pathways (38 genes) may be involved in stem formation. In sum, this study provides a foundation for investigating the molecular processes in the biosynthesis of active compounds and stem development. The transcriptome data presented here provides an important resource for the future studies of the molecular genetics and functional genomics in D. huoshanense and optimized control of the active compounds produced by D. huoshanense.


Subject(s)
Dendrobium/genetics , Flavonoids/genetics , Plant Stems/genetics , Transcriptome/genetics , Biosynthetic Pathways/genetics , Dendrobium/growth & development , Flavonoids/biosynthesis , Gene Expression Profiling , Plant Leaves , Plant Roots/genetics , Plant Roots/growth & development , Plant Stems/growth & development , Plants, Medicinal , Polysaccharides/genetics
16.
Molecules ; 24(7)2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30939828

ABSTRACT

Ampelopsis megalophylla is an important species used in Chinese folk medicine. Flavonoids, the most important active components of plants, greatly determine the quality of A. megalophylla. However, biosynthesis of flavonoids at the molecular and genetic levels in A. megalophylla is not well understood. In this study, we performed chemical analysis and transcriptome analysis of A. megalophylla in different seasons (i.e., May, August, and October). Accumulation of flavonoids was higher in May than in the other two months. Genes involved in the flavonoid biosynthesis pathway, such as chalcone synthase, anthocyanidin synthase, flavanone 3-hydroxylase, flavonoid-3',5'-hydroxylase, caffeoyl-CoA O-methyltransferase, dihydroflavonol 4-reductase, 4-coumarate-CoA ligase, phenylalanine ammonia-lyase, cinnamate 4-hydroxylase, flavonoid 3'-monooxygenase, shikimate O-hydroxycinnamoyltransferase, and leucoanthocyanidin reductase, were identified based on transcriptome data. Fifty ATP binding cassette (ABC) transporter, nine SNARE, forty-nine GST, and eighty-four glycosyltransferases unigenes related to flavonoid transport and biomodification were also found. Moreover, seventy-eight cytochrome P450s and multiple transcription factors (five MYB, two bHLH, and three WD40 family genes) may be associated with the regulation of the flavonoid biosynthesis process. These results provide insights into the molecular processes of flavonoid biosynthesis in A. megalophylla and offer a significant resource for the application of genetic engineering in developing varieties with improved quality.


Subject(s)
Ampelopsis/genetics , Ampelopsis/metabolism , Flavonoids/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Seasons , Transcriptome , Ampelopsis/growth & development , Flavonoids/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...