Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Transl Med ; 13(2): e1198, 2023 02.
Article in English | MEDLINE | ID: mdl-36792369

ABSTRACT

BACKGROUND: Radiation-induced hepatic stellate cell (HSC) activation promotes radiation-induced liver fibrosis (RILF), a complication for hepatocellular carcinoma (HCC) radiotherapy. The demethylase alpha-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) decreases N6-methyladenylate methylation (m6 A) modification of RNA, while its role in regulating RILF pathogenesis and HCC radiosensitivity remains unknown. METHODS: Methylated RNA immunoprecipitation sequencing (MeRIP-seq) and RNA-sequencing (RNA-seq) were used to screen target genes regulated by ALKBH5. HSC with altered ALKBH5 expression was used to assess irradiation-induced HSC activation and the effect of HSC on recruitment and polarisation of monocytes. Key cytokines in medium from irradiated HSC-educated monocytes were identified by cytokine array detection. The effects of blocking ALKBH5 and key cytokines on RILF and HCC radiosensitivity were also evaluated. RESULTS: Radiation-induced ALKBH5 expression in HSC mediated m6 A demethylation of toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) mRNA and activated its downstream NF-κB and JNK/Smad2 pathways to promote HSC activation. Additionally, ALKBH5 regulated CCL5 secretion by irradiated HSC to promote monocyte recruitment and M2 macrophage polarisation. Notably, polarised monocytes secreted CCL20 to up-regulate ALKBH5 expression in HSC, and reduce HCC radiosensitivity by activating ALKBH5/TIRAP axis in HCC cells. ALKBH5 knockdown-combined CCR6 (CCL20 receptor) inhibitor significantly alleviated RILF and improved HCC radiosensitivity in mice. HCC patients with high ALKBH5 and TIRAP expression were prone to radiation-induced liver injury and poor tumour response to radiotherapy. CONCLUSIONS: Collectively, irradiation up-regulates ALKBH5 in HSC to mediate monocyte recruitment and M2 polarisation and form positive feedback to promote RILF and reduce HCC radiosensitivity. The dual roles of ALKBH5 as a microenvironmental regulator and radiosensitisation target provide new ideas for RILF prevention and radiosensitisation of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/radiotherapy , Carcinoma, Hepatocellular/metabolism , Demethylation , Liver Cirrhosis/genetics , Liver Neoplasms/genetics , Liver Neoplasms/radiotherapy , Liver Neoplasms/metabolism , Membrane Glycoproteins/metabolism , Receptors, Interleukin-1/metabolism , RNA/metabolism , RNA, Messenger/genetics
2.
BMC Bioinformatics ; 23(1): 248, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35739471

ABSTRACT

BACKGROUND: At present, the diagnostic ability of hepatocellular carcinoma (HCC) based on serum alpha-fetoprotein level is limited. Finding markers that can effectively distinguish cancer and non-cancerous tissues is important for improving the diagnostic efficiency of HCC. RESULTS: In this study, we developed a predictive model for HCC diagnosis using personalized biological pathways combined with a machine learning algorithm based on regularized regression and carry out relevant examinations. In two training sets, the overall cross-study-validated area under the receiver operating characteristic curve (AUROC), the area under the precision-recall curve and the Brier score of the diagnostic model were 0.987 [95%confidence interval (CI): 0.979-0.996], 0.981 and 0.091, respectively. Besides, the model showed good transferability in external validation set. In TCGA-LIHC cohort, the AUROC, AURPC and Brier score were 0.992 (95%CI: 0.985-0.998), 0.967 and 0.112, respectively. The diagnostic model has accomplished very impressive performance in distinguishing HCC from non-cancerous liver tissues. Moreover, we further analyzed the extracted biological pathways to explore molecular features and prognostic factors. The risk score generated from a 12-gene signature extracted from the characteristic pathways was correlated with some immune related pathways and served as an independent prognostic factor for HCC. CONCLUSION: We used personalized biological pathways analysis and machine learning algorithm to construct a highly accurate HCC diagnostic model. The excellent interpretable performance and good transferability of this model enables it with great potential for personalized medicine, which can assist clinicians in diagnosis for HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Algorithms , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Humans , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Machine Learning
3.
Int J Mol Med ; 47(5)2021 05.
Article in English | MEDLINE | ID: mdl-33693959

ABSTRACT

Long non­coding RNA LincIN has been reported to be overexpressed and to be involved in the metastasis of breast cancer. However, the expression and role of LincIN in esophageal squamous cell carcinoma (ESCC) remain unsolved. In the present study, LincIN expression was examined in ESCC by RT­qPCR, and the roles of LincIN in ESCC were determined using cell growth, migration and invasion assays. In addition, the effects of LincIN on nuclear factor 90 (NF90) and microRNA/miR (miR)­7 were examined by RNA immunoprecipitation assay, RT­qPCR, dual­luciferase reporter assay and western blot analysis. The results revealed that LincIN expression was significantly increased in ESCC tissues and cell lines. The increased expression of LincIN was positively associated with invasion depth, lymph node metastasis, TNM stage and a poor prognosis. Functional assays revealed that the overexpression of LincIN promoted ESCC cell growth, migration and invasion. Mechanistic analysis revealed that LincIN physically bound to NF90, enhanced the binding between NF90 and primary miR­7 (pri­miR­7), and further enhanced the inhibitory effects of NF90 on miR­7 biogenesis. Therefore, LincIN downregulated miR­7 expression in ESCC. The expression of miR­7 inversely correlated with that of LincIN in ESCC tissues. By downregulating miR­7, LincIN increased the expression of HOXB13, a target of miR­7. The overexpression of miR­7 or the depletion of HOXB13 both attenuated the tumor­promoting roles of LincIN in ESCC cell growth, migration and invasion. On the whole, the findings of the present study suggest that LincIN is overexpressed and plays an oncogenic role in ESCC via the regulation of the NF90/miR­7/HOXB13 axis. Thus, LincIN may prove to be a promising prognostic biomarker and therapeutic target for ESCC.


Subject(s)
Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Homeodomain Proteins/genetics , Nuclear Factor 90 Proteins/genetics , RNA, Long Noncoding/genetics , Aged , Cell Movement/genetics , Esophageal Neoplasms/genetics , Esophageal Neoplasms/mortality , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/mortality , Female , Gene Expression Regulation, Neoplastic , Homeodomain Proteins/metabolism , Humans , Male , MicroRNAs/genetics , Middle Aged , Nuclear Factor 90 Proteins/metabolism , Prognosis , Up-Regulation
4.
PeerJ ; 8: e10198, 2020.
Article in English | MEDLINE | ID: mdl-33150086

ABSTRACT

BACKGROUND: Macrophage play a crucial role in regulating tumor progression. This study intended to investigate the circular RNA (circRNA) regulatory network associated with macrophage infiltration in hepatocellular carcinoma (HCC). METHODS: The immune cell fractions of HCC from The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium were calculated by Estimation of the Proportion of Immune and Cancer cells algorithm. The differentially expressed mRNAs (DEmRNAs), microRNAs (DEmiRNAs) and circRNAs (DEcircRNAs) were identified from HCC and adjacent non-tumor cases of TCGA or Gene Expression Omnibus database. The DEmRNAs related to macrophage were selected by weighted gene co-expression network analysis and then utilized to generate the circRNA-miRNA-mRNA network. A hub circRNA regulatory network was established based on the co-expressed DEmiRNAs and DEmRNAs owning contrary correlation with the clinical characteristics, survival and macrophage infiltration level. A gene signature based on the DEmRNAs in hub network was also generated for further evaluation. The circRNA binding bite for miRNA was detected by luciferase assay. RESULTS: High macrophage fraction predicted good survival for HCC. A circRNA-miRNA-mRNA network was constructed by 27 macrophage related DEmRNAs, 21 DEmiRNAs, and 15 DEcircRNAs. Among this network, the expression of hsa-miR-139-5p was negatively correlated with CDCA8, KPNA2, PRC1 or TOP2A. Hsa-miR-139-5p low or targeted DEmRNA high expression was associated with low macrophage infiltration, high grade, advanced stage and poor prognosis of HCC. Additionally, the risk score generated by 4-DEmRNA signature could reflect the macrophage infiltration status and function as an independent prognostic factor for HCC. Finally, hsa_circ_0007456 acting on hsa-miR-139-5p related network was viewed as the hub circRNA regulatory network. Taken together, some circRNA regulatory networks may be associated with macrophage infiltration, which provides clues for mechanism study and therapeutic strategies of HCC.

5.
Front Genet ; 11: 1026, 2020.
Article in English | MEDLINE | ID: mdl-33101367

ABSTRACT

Immune cells in the tumor microenvironment play a crucial role in regulating tumor progression. The circular RNA (circRNA) regulatory network involved in immune cell infiltration in hepatocellular carcinoma (HCC) remains largely unknown. In this study, the "estimate the proportion of immune and cancer cells" (EPIC) application is used to evaluate the fractions of immune cells, cancer-associated fibroblasts, and endothelial cells in HCC from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Patients with a high macrophage fraction have better overall survival, and macrophage fraction is an independent prognostic factor for HCC. Next, the common differentially expressed mRNAs (DEmRNAs), miRNAs (DEmiRNAs), and circRNAs (DEcircRNAs) between paired tumor and non-tumor tissues are screened out from the TCGA and/or GEO databases. Through spearman correlation analysis, the macrophage-related DEmRNAs are identified to construct a circRNA-miRNA-mRNA regulatory network, which includes 6 DEcircRNAs, 7 DEmiRNAs, and 45 DEmRNAs. Functional enrichment analysis reveals that these DEmRNAs are mainly involved in immune-related processes. Furthermore, six hub DEmRNAs are identified to establish a hub circRNA regulatory network. Among the DEmRNAs in the network, PRC1 is identified as the most influential node. PRC1 high expression is correlated with poor prognosis and low macrophage infiltration in HCC. Taken together, we identify a certain circRNA regulatory network related to macrophage infiltration and provide novel insight into the mechanism of study and therapeutic targets for HCC.

6.
J Immunother Cancer ; 8(1)2020 05.
Article in English | MEDLINE | ID: mdl-32461345

ABSTRACT

BACKGROUND: Radioimmunotherapy has a promising antitumor effect in hepatocellular carcinoma (HCC), depending on the regulatory effect of radiotherapy on tumor immune microenvironment. Ionizing radiation (IR)-induced DNA damage repair (DDR) pathway activation leads to the inhibition of immune microenvironment, thus impairing the antitumor effect of radioimmunotherapy. However, it is unclear whether inhibition of the DDR pathway can enhance the effect of radioimmunotherapy. In this study, we aim to explore the role of DDR inhibitor AZD6738 on the combination of radiotherapy and immune checkpoint inhibitors (ICIs) in HCC. METHODS: C57BL/6 mouse subcutaneous tumor model was used to evaluate the ability of different treatment regimens in tumor growth control and tumor recurrence inhibition. Effects of each treatment regimen on the alterations of immunophenotypes including the quantification, activation, proliferating ability, exhaustion marker expression, and memory status were assessed by flow cytometry. RESULTS: AZD6738 further increased radiotherapy-stimulated CD8+ T cell infiltration and activation and reverted the immunosuppressive effect of radiation on the number of Tregs in mice xenografts. Moreover, compared with radioimmunotherapy (radiotherapy plus anti-PD-L1 (Programmed death ligand 1)), the addition of AZD6738 boosted the infiltration, increased cell proliferation, enhanced interferon (IFN)-γ production ability of TIL (tumor-infiltrating lymphocyte) CD8+ T cells, and caused a decreasing trend in the number of TIL Tregs and exhausted T cells in mice xenografts. Thus, the tumor immune microenvironment was significantly improved. Meanwhile, triple therapy (AZD6738 plus radiotherapy plus anti-PD-L1) also induced a better immunophenotype than radioimmunotherapy in mice spleens. As a consequence, triple therapy displayed greater benefit in antitumor efficacy and mice survival than radioimmunotherapy. Mechanism study revealed that the synergistic antitumor effect of AZD6738 with radioimmunotherapy relied on the activation of cyclic GMP-AMP synthase /stimulator of interferon genes (cGAS/STING) signaling pathway. Furthermore, triple therapy led to stronger immunologic memory and lasting antitumor immunity than radioimmunotherapy, thus preventing tumor recurrence in mouse models. CONCLUSIONS: Our findings indicate that AZD6738 might be a potential synergistic treatment for radioimmunotherapy to control the proliferation of HCC cells, prolong survival, and prevent tumor recurrence in patients with HCC by improving the immune microenvironment.


Subject(s)
Carcinoma, Hepatocellular/therapy , Chemoradiotherapy/methods , Liver Neoplasms/therapy , Pyrimidines/pharmacology , Radioimmunotherapy/methods , Sulfoxides/pharmacology , Animals , Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors , B7-H1 Antigen/antagonists & inhibitors , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor/transplantation , Disease Models, Animal , Drug Resistance, Neoplasm/drug effects , Drug Synergism , Female , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Indoles , Liver Neoplasms/immunology , Liver Neoplasms/pathology , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Morpholines , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/therapeutic use , Sulfonamides , Sulfoxides/therapeutic use , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology
7.
Front Cell Dev Biol ; 8: 56, 2020.
Article in English | MEDLINE | ID: mdl-32117982

ABSTRACT

Macrophage-orchestrated chronic inflammation plays an important role in cardiovascular disease, including accelerating the development of calcific aortic valve disease (CAVD). M1 and M2 macrophage polarization imbalances can alter intensity of inflammatory responses. Recombinant human interleukin 37 (IL-37) could be involved in regulating immune cell function to attenuate inflammation. This study aimed to identify IL-37 specifically modulates M1 polarization and investigate the underlying mechanism. Compared with normal valves, there are more M1 macrophages accumulation and less IL-37 expression in calcific aortic valves, which may indicate a negative relationship between IL-37 and M1 polarization. THP-1 cells could differentiate into resting macrophages with phorbol-12-myristate-13-acetate (PMA) and then polarize into M1 macrophages following treatment with lipopolysaccharide (LPS) and interferon gamma (IFN-γ). In vitro, recombinant human IL-37 attenuated the expression of inducible nitric oxide synthase (iNOS), CD11c, IL-6 and monocyte chemoattractant protein 1 (MCP-1) in M1 but augmented the expression of CD206 and IL-10 in M2. The suppression of M1 polarization was associated with the inhibition of the activation of the nuclear factor kappa B (NF-κB) and Notch1 signaling pathways. These results demonstrated that IL-37 inhibits the macrophages polarizing into M1 type via the inhibition of the Notch1 and nuclear factor kappa B pathways. In summary, IL-37 could be a potential therapeutic candidate for progressive CAVD by modulating M1 polarization and its orchestrated inflammation.

SELECTION OF CITATIONS
SEARCH DETAIL
...