Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genetics ; 224(1)2023 05 04.
Article in English | MEDLINE | ID: mdl-36866529

ABSTRACT

The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project.


Subject(s)
Databases, Genetic , Proteins , Gene Ontology , Proteins/genetics , Molecular Sequence Annotation , Computational Biology
2.
Nucleic Acids Res ; 45(D1): D663-D671, 2017 01 04.
Article in English | MEDLINE | ID: mdl-27799470

ABSTRACT

Since 1992, FlyBase (flybase.org) has been an essential online resource for the Drosophila research community. Concentrating on the most extensively studied species, Drosophila melanogaster, FlyBase includes information on genes (molecular and genetic), transgenic constructs, phenotypes, genetic and physical interactions, and reagents such as stocks and cDNAs. Access to data is provided through a number of tools, reports, and bulk-data downloads. Looking to the future, FlyBase is expanding its focus to serve a broader scientific community. In this update, we describe new features, datasets, reagent collections, and data presentations that address this goal, including enhanced orthology data, Human Disease Model Reports, protein domain search and visualization, concise gene summaries, a portal for external resources, video tutorials and the FlyBase Community Advisory Group.


Subject(s)
Computational Biology/methods , Databases, Genetic , Drosophila/genetics , Genomics/methods , Animals , Disease Models, Animal , Genetic Association Studies , Humans , Web Browser
3.
G3 (Bethesda) ; 5(8): 1737-49, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26109356

ABSTRACT

In the context of the FlyBase annotated gene models in Drosophila melanogaster, we describe the many exceptional cases we have curated from the literature or identified in the course of FlyBase analysis. These range from atypical but common examples such as dicistronic and polycistronic transcripts, noncanonical splices, trans-spliced transcripts, noncanonical translation starts, and stop-codon readthroughs, to single exceptional cases such as ribosomal frameshifting and HAC1-type intron processing. In FlyBase, exceptional genes and transcripts are flagged with Sequence Ontology terms and/or standardized comments. Because some of the rule-benders create problems for handlers of high-throughput data, we discuss plans for flagging these cases in bulk data downloads.


Subject(s)
Drosophila melanogaster/genetics , Molecular Sequence Annotation , Animals , Base Sequence , Codon, Terminator , Databases, Genetic , Mitochondria/genetics , Mitochondria/metabolism , Models, Genetic , Protein Biosynthesis , RNA Editing , RNA Splice Sites
4.
G3 (Bethesda) ; 5(8): 1721-36, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26109357

ABSTRACT

We report the current status of the FlyBase annotated gene set for Drosophila melanogaster and highlight improvements based on high-throughput data. The FlyBase annotated gene set consists entirely of manually annotated gene models, with the exception of some classes of small non-coding RNAs. All gene models have been reviewed using evidence from high-throughput datasets, primarily from the modENCODE project. These datasets include RNA-Seq coverage data, RNA-Seq junction data, transcription start site profiles, and translation stop-codon read-through predictions. New annotation guidelines were developed to take into account the use of the high-throughput data. We describe how this flood of new data was incorporated into thousands of new and revised annotations. FlyBase has adopted a philosophy of excluding low-confidence and low-frequency data from gene model annotations; we also do not attempt to represent all possible permutations for complex and modularly organized genes. This has allowed us to produce a high-confidence, manageable gene annotation dataset that is available at FlyBase (http://flybase.org). Interesting aspects of new annotations include new genes (coding, non-coding, and antisense), many genes with alternative transcripts with very long 3' UTRs (up to 15-18 kb), and a stunning mismatch in the number of male-specific genes (approximately 13% of all annotated gene models) vs. female-specific genes (less than 1%). The number of identified pseudogenes and mutations in the sequenced strain also increased significantly. We discuss remaining challenges, for instance, identification of functional small polypeptides and detection of alternative translation starts.


Subject(s)
Drosophila melanogaster/genetics , Molecular Sequence Annotation , 3' Untranslated Regions , Animals , Databases, Genetic , Exons , Female , Male , Models, Genetic , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/metabolism , Sequence Analysis, RNA , Transcription Initiation Site , Transcriptome
5.
Curr Protoc Bioinformatics ; Chapter 9: Unit 9.6, 2006 Jan.
Article in English | MEDLINE | ID: mdl-18428772

ABSTRACT

Chado is a relational database schema that can be used to manage a wide variety of biological information, including genome annotation, genetic, phenotypic, and expression data. Its flexibility comes from its use of "ontologies," which are controlled vocabularies that describe data types and the relationships among them. By changing its ontologies, Chado can be customized to suit many different needs. Another aspect that gives Chado its flexibility is its use of a modular design, which means that users can choose to use only those features of Chado that are suitable for their needs. XORT is the main software tool used to move data in and out of Chado databases. XORT uses an XML-based file format for data import and export; this format is called ChadoXML, The protocols described in this chapter show how to use XORT and related software to import genome annotation data into Chado databases, and how to export data stored in Chado databases into different file formats for report and data mining purposes.


Subject(s)
Chromosome Mapping/methods , Database Management Systems , Databases, Genetic , Documentation/methods , Information Storage and Retrieval/methods , User-Computer Interface
SELECTION OF CITATIONS
SEARCH DETAIL
...