Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 9(21): e2200390, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35619330

ABSTRACT

Solid polymer electrolytes (SPEs) have become promising candidate to replace common liquid electrolyte due to highly improved security. However, the practical use of SPEs is still restricted by their decomposition and breakage at the electrode interfacial layer especially at high voltage. Herein, a new cationic covalent organic framework (COF) is designed and synthesized as a reinforced skeleton to resist the constant oxidative decomposition of solid polycarbonate electrolyte, which can stabilize cathode electrolyte interphase layer to develop long-term cycle solid lithium metal battery. The ultralow HOMO energy (-12.55 eV according to density functional theory (DFT) calculations), reflecting its oxidation resistance at positive potential, would be responsible for the high decomposition voltage of 5.2 V versus Li+ /Li of solid polycarbonate electrolyte. Furthermore, the smooth surface of interfacial layer and inhibited decomposition reaction at cathode side is confirmed in solid LiCoO2 cell, which realizes high initial capacity up to 160.3 mAh g-1 at 0.1 C and greatly improved stability in 4.5 V class solid polymer lithium metal battery with high capacity retention over 200 cycles. This new type of high-voltage resistant solid polymer electrolyte promotes the realization of high-voltage cathode materials and higher energy density lithium metal battery.

2.
Front Chem ; 10: 851973, 2022.
Article in English | MEDLINE | ID: mdl-35372282

ABSTRACT

Aqueous rechargeable zinc-ion batteries (ZIBs) have recently shined in energy storage and transmission, which are due to high safety and low cost. However, the extremely stubborn by-products in the Zn anode severely inhibited the Zn2+ adsorption/desorption and exacerbated the dendrite formation. Herein, we report a facile strategy to eliminate inert Zn4(OH)6SO4·xH2O for the improvement of ZIBs according to the coordination effect by employing ethylenediaminetetraacetic acid-diamine (EDTA-2Na) as a coordination additive in traditional electrolyte. Zn2+ is coordinated with the carboxyl group of the four acetyl carboxyl groups and the N in C-N bonds, forming a new chelating structure, and thus stubborn deposition will be dissolved in the electrolyte. As a result, the discharge capacity of 102 mAh g-1 in the ZnSO4/Li2SO4 with EDTA-2Na electrolyte at a current density of 4 C and a stable cycle life with a capacity of 90.3% after 150 cycles are achieved. It has been concluded that the coordination effect strategy provides a valuable idea for solving the defects of ZIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...