Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem X ; 18: 100712, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37397206

ABSTRACT

A preliminary study was conducted of the chemical, structural properties and immunomodulatory activities of fucoidan isolated from Sargassum Zhangii (SZ). Sargassum Zhangii fucoidan (SZF) was determined to have a sulfate content of 19.74 ± 0.01% (w/w) and an average molecular weight of 111.28 kDa. SZF possessed a backbone structure of (1,4)-α-d-linked-galactose, (3,4)-α-l-fucose, (1,3)-α-d-linked-xylose, ß-d-linked-mannose and a terminal (1,4)-α-d-linked-glucose. The main monosaccharide composition was determined as (w/w) 36.10% galactose, 20.13% fucose, 8.86% xylose, 7.36% glucose, 5.62% mannose, and 18.07% uronic acids, respectively. An immunostimulatory assay showed that SZF, compared to commercial fucoidans (Undaria pitnnaifida and Fucus vesiculosus sources), significantly elevated nitric oxide production via up-regulation of cyclooxygenase-2 and inducible nitric oxide synthase at both gene and protein levels. These results suggest that SZ has the potential to be a source of fucoidan with enhanced properties that may act as a useful ingredient for functional foods, nutritional supplements, and immune enhancers.

2.
Gels ; 9(3)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36975648

ABSTRACT

Bioinspired self-assembly is a bottom-up strategy enabling biologically sophisticated nanostructured biogels that can mimic natural tissue. Self-assembling peptides (SAPs), carefully designed, form signal-rich supramolecular nanostructures that intertwine to form a hydrogel material that can be used for a range of cell and tissue engineering scaffolds. Using the tools of nature, they are a versatile framework for the supply and presentation of important biological factors. Recent developments have shown promise for many applications such as therapeutic gene, drug and cell delivery and yet are stable enough for large-scale tissue engineering. This is due to their excellent programmability-features can be incorporated for innate biocompatibility, biodegradability, synthetic feasibility, biological functionality and responsiveness to external stimuli. SAPs can be used independently or combined with other (macro)molecules to recapitulate surprisingly complex biological functions in a simple framework. It is easy to accomplish localized delivery, since they can be injected and can deliver targeted and sustained effects. In this review, we discuss the categories of SAPs, applications for gene and drug delivery, and their inherent design challenges. We highlight selected applications from the literature and make suggestions to advance the field with SAPs as a simple, yet smart delivery platform for emerging BioMedTech applications.

3.
Mar Drugs ; 21(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36662191

ABSTRACT

Fucoidan is a sulfated algal polyanionic polysaccharide that possesses many biological activities. In this paper, a fucoidan (SHF) polysaccharide was extracted from Sargassum hemiphyllum collected in the South China Sea. The SHF, with a molecular weight of 1166.48 kDa (44.06%, w/w), consisted of glucose (32.68%, w/w), galactose (24.81%, w/w), fucose (20.75%, w/w), xylose (6.98%, w/w), mannose (2.76%, w/w), other neutral monosaccharides, and three uronic acids, including glucuronic acid (5.39%, w/w), mannuronic acid (1.76%, w/w), and guronuronic acid (1.76%, w/w). The SHF exhibited excellent immunostimulatory activity. An immunostimulating assay showed that SHF could significantly increase NO secretion in macrophage RAW 264.7 cells via upregulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) levels based on both gene expression and protein abundance. These results suggest that SHF isolated from Sargassum hemiphyllum has great potential to act as a health-boosting ingredient in the pharmaceutical and functional-food fields.


Subject(s)
Sargassum , Sargassum/chemistry , Polysaccharides/chemistry , Monosaccharides/chemistry , Macrophages
4.
Exp Cell Res ; 370(2): 506-518, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30031130

ABSTRACT

Ischemia/reperfusion (I/R) injury, one of the leading health problems in the world, is defined as a cause of cardiomyocytes death. In the present study, we investigate the role of formyl peptide receptor 1 (FPR1) in cardiomyocyte apoptosis and ventricular remodeling of I/R injury rats and the underlying mechanism involving mitogen-activated protein kinase (MAPK) signaling pathway. The important differentially expressed genes (DEGs) in I/R injury were screened out and downstream pathways affected by DEGs were predicted. We grouped 90 rats into sham, I/R, NC siRNA, FRP1 siRNA, empty vector, and FRP1 vector groups and established a model of I/R injury in rats. CVF value, myocardial infarct areas and positive expression rate of FPR1 and MAPK were detected. Levels of FPR1 and MAPK pathway-related genes were determined by RT-qPCR and western blot analysis. MTT assay was performed to evaluate cell proliferation and flow cytometry to evaluate cell cycle progression and apoptosis. GSE19804 and GSE27262 were screened from Gene Expression Omnibus database. FPR1 was higher in patients with I/R injury and activate the MAPK signaling pathway. FRP1 gene silencing decreased CVF value, infarct area, apoptotic index, positive expression rates of FPR1 and MAPK, decreased FPR1, p38, ERK, JNK, MMP-2, TIMP-2, NF-kB, Bax, p-p38, p-ERK, and p-JNK levels, increased Bcl-2 level, promoted cell proliferation and cell cycle progression, and inhibited cell apoptosis rate. Overall, our study demonstrates that the silencing of FPR1 gene depresses inflammation, cardiomyocyte apoptosis and ventricular remodeling in rats with I/R injury through the suppressing the activation of the MAPK signaling pathway.


Subject(s)
Apoptosis/genetics , Myocytes, Cardiac/metabolism , Receptors, Formyl Peptide/genetics , Reperfusion Injury/metabolism , Ventricular Remodeling/physiology , Animals , Cell Proliferation/genetics , Gene Silencing/physiology , Male , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Rats, Sprague-Dawley , Signal Transduction/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...