Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 138
Filter
1.
Food Chem ; 459: 140352, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38991447

ABSTRACT

In this study, a hydrophobic covalent organic framework-functionalized magnetic composite (CoFe2O4@Ti3C2@TAPB-TFTA) with a high specific area with 1,3,5-tris(4-aminophenyl)benzene (TAPB) and 2,3,5,6-tetrafluoroterephthalaldehyde (TFTA) was designed and synthesized through Schiff base reaction. An efficient magnetic solid-phase extraction method was established and combined with gas chromatography-triple quadrupole mass spectrometry to sensitively determine 10 organochlorine and organophosphorus pesticides in tea samples. The established method exhibited good linearity in the range of 0.05-120 µg/L and had low limits of detection (0.013-0.018 µg/L). The method was evaluated with tea samples, and the spiked recoveries of pesticides in different tea samples reached satisfactory values of 85.7-96.8%. Moreover, the adsorption of pesticides was spontaneous and followed Redlich-Peterson isotherm and pseudo-second-order kinetic models. These results demonstrate the sensitivity, effectiveness, and reliability of the proposed method for monitoring organochlorine and organophosphorus pesticides in tea samples, providing a preliminary basis for researchers to reasonably design adsorbents for the efficient extraction of pesticides.

2.
Chemosphere ; 361: 142535, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38844108

ABSTRACT

Antibiotics are widely used in clinical medicine due to their excellent antibacterial abilities. As typical emerging pollutants, their misuse can lead to excess antibiotics entering the environment, causing antimicrobial resistance and leading to serious health problems via food chain. Herein, a nano-fluorescent probe based on nitrogen-doped carbon dots (N-CDs) was constructed for the sensitive detection of chlortetracycline (CTC). N-CDs with stable fluorescence were synthesized by hydrothermal method using alizarin red and melamine as raw materials. The N-CDs exhibited significant independence to excitation wavelength. The fluorescence of N-CDs was significantly quenched by CTC ascribing to the fluorescence resonance energy transfer mechanism. The concentration of N-CDs, solution pH and incubation time were optimized to obtain the optimal detection parameters. Under optimal conditions, CTC exhibited excellent linearity over the range of 20-1200 µg/L, and the detection limit was 8.74 µg/L. The method was validated with actual water samples and achieved satisfied spiked recoveries of 97.6-102.6%. Therefore, the proposed method has significant application value in the detection of CTC in waters.


Subject(s)
Anti-Bacterial Agents , Carbon , Chlortetracycline , Fluorescent Dyes , Limit of Detection , Nitrogen , Quantum Dots , Water Pollutants, Chemical , Chlortetracycline/analysis , Nitrogen/chemistry , Nitrogen/analysis , Carbon/chemistry , Fluorescent Dyes/chemistry , Water Pollutants, Chemical/analysis , Quantum Dots/chemistry , Anti-Bacterial Agents/analysis , Fluorescence Resonance Energy Transfer , Fluorescence
3.
Water Res ; 257: 121681, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38692257

ABSTRACT

Urban reclaimed water is important water resource in China, while the residual new pollutants in the water largely challenge their safety for further use. China's action program for the management of new pollutants (also known as emerging contaminants) requires effective method for monitoring diverse new pollutants in water. This work proposed a highly sensitive passive sampling method for monitoring diverse new pollutants in urban reclaimed water. Hydrophilic-lipophilic balance sorbent-embedded cellulose acetate membranes (HECAMs) were dynamically deployed in self-developed continuous flow integrative sampling device (CFISD) for sampling four types of new pollutants with wide polarity ranges (1.11 < log Kow < 9.49) in a reclaimed water network for landscape irrigation in Beijing, China. The estimated equilibrium partition ratios of most chemicals between HECAM and water were over 104, which would provide low detection limits. In the 7-d high-efficiency deployment, thirty new pollutants were detected, which indicated incompletely removal of various new pollutants in wastewater treatment process. The dynamical accumulation data were successfully fitted by first-order kinetic model and different contaminants reached different accumulation phases in the HECAMs during 7 d. Acceptable and steady uptake rate constants and sampling rates were obtained with the use of CFISD in field sampling. The estimated time-weighted average concentrations for contaminants had wide concentration range and were from 0.03 ng L-1 (pendimethalin) to 3,394 ng L-1 (dibutyl phthalate) and this may lead to environmental risk for further use the reclaimed water. Dynamical deployment results also provided sensitive information of concentration fluctuations and twelve pollutants showed concentration fluctuations during the sampling period. In summary, HECAM showed high sensitivities and credible performance of monitoring diverse new pollutants in the urban reclaimed water.


Subject(s)
Cellulose , Environmental Monitoring , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Cellulose/analogs & derivatives , Cellulose/chemistry , Environmental Monitoring/methods , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial , Wastewater/chemistry , Waste Disposal, Fluid
4.
Eur J Cell Biol ; 103(2): 151421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38776620

ABSTRACT

The Microphthalmia-associated Transcription Factor (MITF) governs numerous cellular and developmental processes. In mice, it promotes specification and differentiation of the retinal pigmented epithelium (RPE), and in humans, some mutations in MITF induce congenital eye malformations. Herein, we explore the function and regulation of Mitf in Drosophila eye development and uncover two roles. We find that knockdown of Mitf results in retinal displacement (RDis), a phenotype associated with abnormal eye formation. Mitf functions in the peripodial epithelium (PE), a retinal support tissue akin to the RPE, to suppress RDis, via the Hippo pathway effector Yorkie (Yki). Yki physically interacts with Mitf and can modify its transcriptional activity in vitro. Severe loss of Mitf, instead, results in the de-repression of retinogenesis in the PE, precluding its development. This activity of Mitf requires the protein phosphatase 2 A holoenzyme STRIPAK-PP2A, but not Yki; Mitf transcriptional activity is potentiated by STRIPAK-PP2A in vitro and in vivo. Knockdown of STRIPAK-PP2A results in cytoplasmic retention of Mitf in vivo and in its decreased stability in vitro, highlighting two potential mechanisms for the control of Mitf function by STRIPAK-PP2A. Thus, Mitf functions in a context-dependent manner as a key determinant of form and fate in the Drosophila eye progenitor epithelium.


Subject(s)
Drosophila Proteins , Microphthalmia-Associated Transcription Factor , YAP-Signaling Proteins , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Microphthalmia-Associated Transcription Factor/metabolism , Microphthalmia-Associated Transcription Factor/genetics , YAP-Signaling Proteins/metabolism , YAP-Signaling Proteins/genetics , Trans-Activators/metabolism , Trans-Activators/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Eye/metabolism , Eye/growth & development , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Epithelium/metabolism , Cell Differentiation , Homeodomain Proteins
5.
Talanta ; 275: 126119, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38640521

ABSTRACT

Present work reported a novel nanozyme g-C3N4@Cu, N-CDs with excellent peroxidase-like activity obtained by loading Cu and N co-doped carbon dots on g-C3N4 (graphitic carbon nitride). g-C3N4@Cu, N-CDs can catalyze H2O2 to generate hydroxyl radical •OH, which oxidizes o-phenylenediamine to 2,3-diaminophenazine, which emits orange fluorescence under ultraviolet light irradiation. The experimental results confirmed that 1,4-benzenedithiol (BDT) could inhibit the peroxidase-like activity of g-C3N4@Cu, N-CDs. Based the principle above, a colorimetric-fluorescence dual-mode sensor for rapidly sensing of BDT was creatively constructed with assisting of a smartphone. The sensor showed excellent linearity over ranges of 0.75-132 µM and 0.33-60.0 µM with detection limits of 0.32 µM and 0.25 µM for colorimetric and fluorescence detection, respectively. Moreover, a smartphone-assisted colorimetric array sensor was constructed to distinguish six sulfur-containing compounds according to the difference in the degree of inhibition of nanozyme activity by different sulfur-containing compounds. The array sensor could distinguish sulfur-containing compounds at low concentration as low as 0.4 µM. The results validated that the designed sensor was a convenient and fast platform, which could be utilized as a reliably portable tool for the efficient and accurate detection of BDT and the discrimination of multiple sulfur compounds in real water samples.


Subject(s)
Colorimetry , Copper , Smartphone , Sulfides , Colorimetry/methods , Copper/chemistry , Sulfides/chemistry , Cadmium Compounds/chemistry , Water Pollutants, Chemical/analysis , Peroxidase/chemistry , Peroxidase/metabolism , Fluorescence , Sulfur Compounds/analysis , Sulfur Compounds/chemistry , Limit of Detection , Spectrometry, Fluorescence/methods , Sulfhydryl Compounds/chemistry , Sulfhydryl Compounds/analysis , Carbon/chemistry , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Graphite , Nitrogen Compounds
6.
J Colloid Interface Sci ; 667: 403-413, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38640659

ABSTRACT

In this study, nitrogen-doped carbon dots (N-CDs) were facilely fabricated by one-pot hydrothermal method with levulinic acid and triethanolamine. A fluorescent sensor array was established for identifying azo compounds including Sudan Orange G (SOG), p-diaminoazobenzene, p-aminoazobenzene, azobenzene and quantitative detection of SOG. Experimental results revealed that azo compounds could quench the fluorescent intensity of N-CDs. Owing to various azo compounds showing different affinities to N-CDs, the sensor array exhibited different fluorescence quenching changes, which were further analyzed with principal component analysis to discriminate azo compounds. The sensor array was able to differentiate and recognize diverse concentrations of azo compounds from 0.25 to 2 mg/L. Simultaneously, a variety of factors affecting the detection of SOG were optimized. Under the optimized conditions, the sensor showed excellent stability and sensitivity. The sensor possessed marvelous linearity in the range of 0.1-1 mg/L and 1-4 mg/L and the detection limit was 27.82 µg/L. Spiked recoveries of 90.8-98.2 % were attained at spiked levels of 0.2 mg/L and 1 mg/L, demonstrating that the constructed fluorescence sensor was dependable and feasible for sensing SOG in environmental water samples.

7.
Food Chem ; 447: 138998, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38503068

ABSTRACT

As a typical kind of new pollutants, there are still some challenges in the rapid detection of antibiotics. In this work, a sensitive fluorescent probe based on boron-doped carbon dots (B-CDs) in combination with thermo-responsive magnetic molecularly imprinted polymers (T-MMIPs) was constructed for the detection of oxytetracycline (OTC) in tea drinks. T-MMIPs were designed, fabricated and employed to enrich OTC at trace level from tea drinks, and B-CDs were utilized as the fluorescent probe to detect the concentration of OTC. The proposed method exhibited good linear relationship with OTC concentration from 0.2 to 60 µg L-1 and the limit of detection was 0.1 µg L-1. The established method has been successfully validated with tea beverages. Present work was the first attempt application of T-MMIPs in combination with CDs in detection of OTC, and demonstrated that the proposed method endowed the detection of OTC with high selectivity, sensitivity, reliability and wide application prospect, meanwhile offered a new strategy for the method establishment of rapid and sensitive detection of trace antibiotics in food and other matrices.


Subject(s)
Molecular Imprinting , Oxytetracycline , Oxytetracycline/analysis , Boron , Molecular Imprinting/methods , Carbon , Fluorescent Dyes , Reproducibility of Results , Polymers , Anti-Bacterial Agents , Solid Phase Extraction/methods , Tea , Magnetic Phenomena , Limit of Detection
8.
Talanta ; 273: 125864, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38452592

ABSTRACT

Heterocyclic aromatic hydrocarbons are concerned pollutants with carcinogenic toxicity, which exist universally in various environmental matrices and have great harm to environmental and human health. In present work, magnetic resorcinol-formaldehyde composites (Fe3O4@SiO2@R-F) were fabricated via aldol condensation reaction under alkaline condition. The prepared magnetic materials were examined and analyzed with Fourier transform infrared spectroscopy and other related instruments. The Fe3O4@SiO2@R-F composites were utilized to develop an efficient magnetic solid phase extraction (MSPE) method for extracting six heteropolyclic aromatic hydrocarbons from environmental water samples including carbazole (CB), 7-methylquinoline (7-MQL), 9-methylcarbazole (9-MCB), dibenzothiophene (DBT), 4-methyldibenzothiophene (4-MDBT), and 4,6-dimethyldibenzothiophene (4,6-DMDBT). The analytes were analyzed by high performance liquid chromatography-ultraviolet variable wavelength detector (HPLC-VWD). The main factors affecting MSPE were optimized. With the optimal parameters, 9-MCB and 4-MDBT have good linearity over the concentration range of 0.1-300 µg L-1, and 7-MQL, CB, DBT and 4,6-DMDBT have good linearity over the concentration range of 0.5-300 µg L-1. The limits of detection were over the concentration range of 0.012-0.031 µg L-1. This method was successfully employed to measure real waters, and the spiked recoveries ranged from 89.4% to 99.9%. The results confirmed that the developed method was reliable, robust and could be employed as a usefully alternate way for analyzing such pollutants in waters.

9.
Talanta ; 272: 125749, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38359723

ABSTRACT

In this work, a sensitive fluorescent sensor toward p-nitrophenol (4-NP) integrating magnetic molecularly imprinted materials and carbon dots (CDs) was proposed. Magnetic material and CDs derived from K3 [Fe(CN)6] and glucose were simultaneously obtained through simple one-step hydrothermal process. Introducing of molecularly imprinted materials based magnetic solid phase extraction (MSPE) endowed the constructed fluorescent sensor with higher sensitivity and selectivity. The significant factors affecting the sensitivity of the sensor toward 4-NP were optimized. Good linearity was obtained between fluorescent intensity of CDs and different concentration of 4-NP from 0.08 to 62.5 µg L-1. The sensitivity of constructed sensor was very low with detection limit of 0.02 µg L-1. Reliable applicability was also proved by the well-pleasing recoveries of 94.2-97.8% with different spiked concentrations of 4-NP in real environmental waters.

10.
Environ Sci Technol ; 57(29): 10754-10762, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37428629

ABSTRACT

Plastic has been demonstrated to release nanoplastics (NPs) into the atmosphere under sunlight irradiation, posing a continuous health risk to the respiratory system. However, due to lack of reliable quantification methods, the occurrence and distribution of NPs in the atmosphere remain unclear. Polystyrene (PS) micro- and nanoplastics (MNPs) represent a crucial component of atmospheric MNPs. In this study, we proposed a simple and robust method for determining the concentration of atmospheric PS NPs using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Following active sampling, the filter membrane is directly ground and introduced into the Py-GC/MS system to quantify PS NPs. The proposed method demonstrates excellent reproducibility and high sensitivity, with a detection limit as low as down to 15 pg/m3 for PS NPs. By using this method, the occurrence of PS NPs in both indoor and outdoor atmospheres has been confirmed. Furthermore, the results showed that the abundance of outdoor PS NPs was significantly higher than that of indoor samples, and there was no significant difference in NP vertical distribution within a height of 28.6 m. This method can be applied for the routine monitoring of atmospheric PS NPs and for evaluating their risk to human health.


Subject(s)
Nanoparticles , Water Pollutants, Chemical , Humans , Polystyrenes , Microplastics , Gas Chromatography-Mass Spectrometry , Pyrolysis , Reproducibility of Results , Water Pollutants, Chemical/analysis , Nanoparticles/chemistry
11.
Sci Total Environ ; 896: 165257, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37414165

ABSTRACT

Doxycycline (DOX), a typical tetracycline antibiotic, is widely used because of its excellent antibacterial activity. To develop effective method for DOX has attracted much more attention. Herein, a new detection technology integrating magnetic solid phase extraction (MSPE) based on thermosensitive magnetic molecularly imprinted polymers (T-MMIPs) and fluorescence spectrometry based on carbon dots (CDs) was established. Thermosensitive magnetic molecularly imprinted polymers (T-MMIPs) was designed for selective enrichment of trace DOX. The synthesized T-MMIPs showed excellent selectivity for DOX. The adsorption performance of T-MMIPs varied with temperature in different solvents, which could achieve the enrichment and rapid desorption of DOX. In addition, the synthesized CDs had stable fluorescent property and better water-solubility, and the fluorescence of CDs was significantly quenched by DOX due to the internal filtration effect (IFE). Under the optimized conditions, the method resulted in good linearity over the range from 0.5 to 30 µg L-1, and the limit of detection was 0.2 µg L-1. The constructed detection technology was validated with real water samples, and excellent spiked recoveries from 92.5 % to 105.2 % were achieved. These data clearly indicated that the proposed technology was rapid, highly selective, environmentally friendly, and possessed significant potential application and development prospects.


Subject(s)
Molecular Imprinting , Nanostructures , Molecular Imprinting/methods , Doxycycline , Molecularly Imprinted Polymers , Fluorescent Dyes , Polymers/chemistry , Anti-Bacterial Agents , Adsorption , Water/chemistry , Carbon
12.
Chemosphere ; 328: 138537, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37011821

ABSTRACT

Bisphenols (BPs) are typical endocrine disruptors, which can cause great effects on environmental, organisms and human health. In this study, ß-Cyclodextrin (ß-CD) functionalized polyamidoamine dendrimers-modified Fe3O4 nanomaterials (MNPs@PAMAM (G3.0)@ß-CD) were facilely synthesized. It exhibited good adsorption capacities for BPs, which was utilized to construct a sensitive tool in combination with high performance liquid chromatography for monitoring BPs such as bisphenol A (BPA), tetrabromobisphenol A (TBBPA), bisphenol S (BPS), bisphenol AF (BPAF) and bisphenol AP (BPAP) in beverage samples. The factors affecting the enrichment were examined such as generation of adsorbent, dosage of adsorbent, type and volume of eluting solvent, elution time and pH value of sample solution. The optimal parameters for enrichment was as follows: dosage of adsorbent, 60 mg; adsorption time, 50min; sample pH, pH7; elutent, 9 mL mixture of methanol and acetone(1:1); elution time, 6min; sample volume, 60 mL. The experimental results demonstrated that the adsorption conformed to pseudo-second-order kinetic model and Langmuir adsorption isotherm model. The results showed the maximum adsorption capacities of BPS, TBBPA, BPA, BPAF and BPAP were 131.80 µgg-1, 139.84 µgg-1, 157.08 µgg-1, 142.11 µgg-1 and 134.23 µgg-1, respectively. Under optimal conditions, BPS had good linear relationship over range from of 0.5-300 µgL-1, and the linear ranges of BPA, TBBPA, BPAF and BPAP ranged from 0.1 to 300 µgL-1. The limits of detection (S/N = 3) for BPs were good in range of 0.016-0.039 µgL-1. The spiked recoveries of target bisphenols (BPs) in beverages were approving over range from 92.3% to 99.2%. The established method possessed merits of easy to operate, good sensitivity, rapidness as well as environmental friendliness, and which earned great application potential for the enrichment and detection of trace BPs in practical samples.


Subject(s)
Dendrimers , Environmental Pollutants , beta-Cyclodextrins , Humans , Environmental Pollutants/analysis , Beverages/analysis , Polyamines , Benzhydryl Compounds/analysis , Magnetic Phenomena
13.
Chemosphere ; 324: 138303, 2023 May.
Article in English | MEDLINE | ID: mdl-36871803

ABSTRACT

Bisphenol A (BPA) is an endocrine disrupting chemical and poses a grave threat to the human health. Herein, a fluorescent probe constructed with molecularly imprinted polymers decorated carbon dots (CDs@MIPs) was proposed for determination of BPA with high selectivity. The CDs@MIPs were constructed using BPA, 4-vinylpyridine and ethylene glycol dimethacrylate as template, functional monomer and cross linker, respectively. The obtained fluorescent probe not only owned a highly selective recognition function derived from MIPs but also displayed an excellent sensitivity for sensing BPA stemmed from CDs. The fluorescence intensity of CDs@MIPs was varied before and after the removal of BPA templates. The fluorescent decrease fraction of the fluorescent probe demonstrates a nice linearity in BPA concentration range of 10-2000 nM (r2 = 0.9998) and the detection limit is as low as 1.5 nM. The fluorescent probe was triumphantly utilized to sense the level of BPA in real aqueous and plastic samples with good results. Moreover, the fluorescent probe offered a wonderful means for fast identification and sensitive detection of BPA from environmental aqueous samples.


Subject(s)
Molecular Imprinting , Quantum Dots , Humans , Molecularly Imprinted Polymers , Polymers , Fluorescent Dyes , Carbon , Citric Acid , Water , Ethylenediamines , Molecular Imprinting/methods
14.
Biol Open ; 12(3)2023 03 15.
Article in English | MEDLINE | ID: mdl-36912729

ABSTRACT

The Drosophila eye develops from the larval eye disc, a flattened vesicle comprised of continuous retinal and peripodial epithelia (PE). The PE is an epithelium that plays a supporting role in retinal neurogenesis, but gives rise to cuticle in the adult. We report here that the PE is also necessary to preserve the morphology of the retinal epithelium. Depletion of the adherens junction (AJ) components ß-Catenin (ß-Cat), DE-Cadherin or α-Catenin from the PE leads to altered disc morphology, characterized by retinal displacement (RDis); so too does loss of the Ajuba protein Jub, an AJ-associated regulator of the transcriptional coactivator Yorkie (Yki). Restoring AJs or overexpressing Yki in ß-Cat deficient PE results in suppression of RDis. Additional suppressors of AJ-dependent RDis include knockdown of Rho kinase (Rok) and Dystrophin (Dys). Furthermore, knockdown of ßPS integrin (Mys) from the PE results in RDis, while overexpression of Mys can suppress RDis induced by the loss of ß-Cat. We thus propose that AJ-Jub-Yki signaling in PE cells regulates PE cell contractile properties and/or attachment to the extracellular matrix to promote normal eye disc morphology.


Subject(s)
Adherens Junctions , Drosophila Proteins , Animals , Adherens Junctions/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Trans-Activators/metabolism , Signal Transduction , Epithelium/metabolism , Drosophila/metabolism
15.
Sci Total Environ ; 866: 161391, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36621486

ABSTRACT

Pesticides are useful products for agriculture and human life, but they are often released into surface waters and are hazardous to aquatic ecosystems. Pesticides monitoring in surface waters is challenging due to the great variety, ultratrace levels and nonpoint source pollution of pesticides; however, continuous passive sampling may be conducive to solving these problems. This work evaluated the performance of a newly developed passive sampler (hydrophilic-lipophilic balance sorbent-embedded cellulose acetate membrane, HECAM) for six types of currently used/present pesticides. The uptake kinetics and equilibrium partitioning of nineteen pesticides in different dissolved concentrations were studied by dynamic accumulation and equilibrium partitioning experiments, respectively. In the dynamic accumulation experiments, pesticides gradually accumulated in the HECAM and followed a first-order kinetic model. The same type of pesticides had roughly comparable accumulation concentrations. The estimated uptake rate constants ranged from 1.04 to 13.5 L g-1 d-1, and sampling rates ranged from 0.02 to 0.31 L d-1 for the pesticides in the HECAM (size of 2 cm × 3 cm). Pesticide accumulation concentrations in the HECAM increased linearly with increasing dissolved concentrations, which means that varying concentrations can also be monitored by the HECAM. In the equilibrium partitioning experiments, the pesticide partitioning behavior at varying dissolved concentrations can be described by the Freundlich model. The calculated equilibrium partition coefficients (log KD) for pesticides ranged from 3.32 to 4.54, and different pesticide types showed different changes with log Kow. Comparable results were found when estimating chemical equilibrium partition coefficients by the dynamic accumulation and equilibrium partitioning methods. Field deployment of the HECAM in river waters resulted in the detection of four pesticides, and the measured results were comparable to those of active sampling coupled with liquid-liquid extraction. These results suggest that the HECAM would be a promising strategy for simultaneously monitoring diverse pesticides in waters.

16.
Chemosphere ; 313: 137340, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36455659

ABSTRACT

Due to the strong metal-sulfur interaction between mercapto groups and metal ions, which can be used to functionalize polyamidoamine dendrimer decorated Fe3O4 nanoparticles for high enrichment of trace heavy metal ions from waters. Based on this concept, polyamidoamine dendrimer modified Fe3O4 nanomaterials were functionalized with l-Cysteine and a new magnetic solid phase extraction for rapid adsorption and separation of Hg2+, Pb2+, Co2+ and Cd2+ from waters was established. The factors affecting extraction efficiency have been optimized. Upon the optimal parameters, the established method provided good linear ranges of 0.1-200 µg L-1 for Hg2+ and 0.05-200 µg L-1 for Pb2+, Co2+ and Cd2+, and high sensitivity with limits of detection (LOD) of 0.018 µg L-1, 0.014 µg L-1, 0.013 µg L-1 and 0.025 µg L-1 for Cd2+, Pb2+, Co2+ and Hg2+, respectively. Real water samples were utilized to validate the proposed method, and achieved results revealed that the proposed method was sensitive, effective, stable and suitable for monitoring Pb2+, Cd2+, Co2+and Hg2+ in environmental waters. This work provided a novel strategy for the simultaneous analysis of target cations in waters, and a new direction for developing decoration method of nanomaterials according to specific purpose.


Subject(s)
Dendrimers , Mercury , Metals, Heavy , Trace Elements , Dendrimers/chemistry , Cysteine , Cadmium/analysis , Chromatography, High Pressure Liquid/methods , Lead , Metals, Heavy/analysis , Mercury/analysis , Trace Elements/analysis , Cations , Adsorption , Water/chemistry , Solid Phase Extraction/methods , Magnetic Phenomena
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 286: 122040, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36323094

ABSTRACT

2,4-Dinitroaniline is a multifunctional product and has been applicated in various fields. It has absorbed much concerns due to its large consumption and occurrence in many environmental matrices. It is urgent to explore reliable and sensitive measurement technology. Present study described an outstanding fluorescence sensor constructed with carbon dots (CDs) derived from vitamin B1. The CDs were fabricated by dealing with a facile hydrothermal process, and exhibited good water solubility, fluorescence stability and highly fluorescence quenching characteristics in presence of 2,4-dinitroaniline. The excitation and emission wavelengths of the obtained CDs were 305 and 378 nm, respectively. The sensor displayed good selectivity and sensitivity for 2,4-dinitroaniline. Good linearity can be achieved in two-stage of 0.2-3 µmol L-1 and 3-20 µmol L-1. The sensor earned low detection limit for 2,4-dinitroaniline down to 0.05 µmol L-1. The sensor has been commendably employed for analysis of 2,4-dinitroaniline in real aqueous samples with spiked recoveries in the range of 95.0-99.6%. The proposed sensor provided a promising alternative for analysis of environmental pollutants or other meaningful employment.


Subject(s)
Carbon , Quantum Dots , Spectrometry, Fluorescence , Fluorescent Dyes , Thiamine , Limit of Detection , Vitamins
18.
J Cell Sci ; 135(20)2022 10 15.
Article in English | MEDLINE | ID: mdl-36205125

ABSTRACT

Hippo-Yorkie (Hpo-Yki) signaling is central to diverse developmental processes. Although its redeployment has been amply demonstrated, its context-specific regulation remains poorly understood. The Drosophila eye disc is a continuous epithelium folded into two layers, the peripodial epithelium (PE) and the retinal progenitor epithelium. Here, Yki acts in the PE, first to promote PE identity by suppressing retina fate, and subsequently to maintain proper disc morphology. In the latter process, loss of Yki results in the displacement of a portion of the differentiating retinal epithelium onto the PE side. We show that Protein Phosphatase 2A (PP2A) complexes comprising different substrate-specificity B-type subunits govern the Hpo-Yki axis in this context. These include holoenzymes containing the B‴ subunit Cka and those containing the B' subunits Wdb or Wrd. Whereas PP2A(Cka), as part of the STRIPAK complex, is known to regulate Hpo directly, PP2A(Wdb) acts genetically upstream of the antagonistic activities of the Hpo regulators Sav and Rassf. These in vivo data provide the first evidence of PP2A(B') heterotrimer function in Hpo pathway regulation and reveal pathway diversification at distinct developmental times in the same tissue.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Protein Processing, Post-Translational , Adaptor Proteins, Signal Transducing/metabolism , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/metabolism
19.
Chemosphere ; 308(Pt 2): 136268, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36058370

ABSTRACT

Nitrogen and sulfur element co-decorated carbon nanodots (N,S-CDs) were synthesized by solid state hydrothermal method utilizing mercaptoacetic acid and melamine as the precursors. The obtained N,S-CDs had wonderful optical and chemical stability. The experimental results demonstrated that silver nanoparticles (AgNPs) could noticeably quench the fluorescence of N,S-CDs. The quenching of fluorescence signal from the presence of AgNPs may be attributed to inner filter effect. The crafted nanoprobe for sensing AgNPs was endowed with some specialties such as simplicity, excellent selectivity and sensitivity, environmental friendliness and low cost. The probe exhibited specific linearity from 0.024 to 1.77 nM, and was endowed a good limit of detection down to 0.022 nM. The experimental results demonstrated that the built probe could be an efficient tool for AgNPs detection and had a prospective application, and also provided a new direction for establishing innovative method for determining and monitoring pollutants from nanoparticles.


Subject(s)
Environmental Pollutants , Metal Nanoparticles , Quantum Dots , Carbon , Coloring Agents , Fluorescent Dyes , Limit of Detection , Nitrogen , Silver , Sulfur , Thioglycolates , Triazines
20.
Chemosphere ; 308(Pt 1): 136298, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36064008

ABSTRACT

In this study, a label-free "turn off" fluorescent sensor has been resoundingly fabricated using carbon dots (CDs) for ultrasensitive detection of copper ions (Cu2+). CDs are prepared by solid phase carbonization method using p-toluidine and l-cysteine as the precursors. The synthesized CDs exhibited the highest fluorescence intensity with excitation and emission wavelengths set at 300 nm and 400 nm, respectively. The CDs were selective and sensitive to Cu2+ due to the static quenching mechanism. The concentration of CDs, and solution pH and incubation time were important parameters for the developed sensor. The experimental results showed that 20 mgL-1 was enough for the analysis. As the solution pH was concerned, it was apparent that the sensor was endowed with an excellent response signal to Cu2+ and provided high sensitivity at pH 12. The interaction occurred very quickly, and the incubation time could be set at 1 min. The sensor provided a two-stage calibration curve to Cu2+ in the range of 0.05-0.7 and 0.7-4 µM with a limit of detection of 47 nM. The obtained results clearly demonstrated that this facile method was fast, reliable and selective for detecting Cu2+, which would explore a prospective strategy for developing effective and low-cost sensors for monitoring metal ions in aqueous environments.


Subject(s)
Carbon , Quantum Dots , Copper/analysis , Cysteine , Fluorescent Dyes , Ions , Spectrometry, Fluorescence/methods , Toluidines
SELECTION OF CITATIONS
SEARCH DETAIL
...