Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurol ; 13: 1013062, 2022.
Article in English | MEDLINE | ID: mdl-36388174

ABSTRACT

Objective: Nuclear factor erythroid 2-related factor 2 (Nrf2) may harbor endogenous neuroprotective role. We strived to ascertain the prognostic significance of serum Nrf2 in severe traumatic brain injury (sTBI). Methods: This prospective cohort study included 105 controls and 105 sTBI patients, whose serum Nrf2 levels were quantified. Its relations to traumatic severity and 180-day overall survival, mortality, and poor prognosis (extended Glasgow Outcome Scale score 1-4) were discerned using multivariate analysis. Results: There was a substantial enhancement of serum Nrf1 levels of patients (median, 10.9 vs. 3.3 ng/ml; P < 0.001), as compared to controls. Serum Nrf2 levels were independently correlative to Rotterdam computed tomography (CT) scores (ρ = 0.549, P < 0.001; t = 2.671, P = 0.009) and Glasgow Coma Scale (GCS) scores (ρ = -0.625, P < 0.001; t = -3.821, P < 0.001). Serum Nrf2 levels were significantly higher in non-survivors than in survivors (median, 12.9 vs. 10.3 ng/ml; P < 0.001) and in poor prognosis patients than in good prognosis patients (median, 12.5 vs. 9.4 ng/ml; P < 0.001). Patients with serum Nrf2 levels > median value (10.9 ng/ml) had markedly shorter 180-day overall survival time than the other remainders (mean, 129.3 vs. 161.3 days; P = 0.002). Serum Nrf2 levels were independently predictive of 180-day mortality (odds ratio, 1.361; P = 0.024), overall survival (hazard ratio, 1.214; P = 0.013), and poor prognosis (odds ratio, 1.329; P = 0.023). Serum Nrf2 levels distinguished the risks of 180-day mortality and poor prognosis with areas under receiver operating characteristic curve (AUCs) at 0.768 and 0.793, respectively. Serum Nrf2 levels > 10.3 ng/ml and 10.8 ng/ml discriminated patients at risk of 180-day mortality and poor prognosis with the maximum Youden indices of 0.404 and 0.455, respectively. Serum Nrf2 levels combined with GCS scores and Rotterdam CT scores for death prediction (AUC, 0.897; 95% CI, 0.837-0.957) had significantly higher AUC than GCS scores (P = 0.028), Rotterdam CT scores (P = 0.007), or serum Nrf2 levels (P = 0.006) alone, and the combination for poor outcome prediction (AUC, 0.889; 95% CI, 0.831-0.948) displayed significantly higher AUC than GCS scores (P = 0.035), Rotterdam CT scores (P = 0.006), or serum Nrf2 levels (P = 0.008) alone. Conclusion: Increased serum Nrf2 levels are tightly associated with traumatic severity and prognosis, supporting the considerable prognostic role of serum Nrf2 in sTBI.

2.
Appl Environ Microbiol ; 82(6): 1898-1905, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26773081

ABSTRACT

Daptomycin is a potent cyclic lipopeptide antibiotic. It is widely used against various Gram-positive bacterial pathogens. Historically, a poor understanding of the transcriptional regulation of daptomycin biosynthesis has limited the options for targeted genetic engineering toward titer improvement. Here, we isolated a TetR family transcriptional regulator, DepR1, from the industrial producer Streptomyces roseosporus SW0702 using a biotinylated dptE promoter (dptEp) as a probe. The direct interaction between DepR1 and dptEp then was confirmed by electrophoretic mobility shift assays and DNase I footprinting assays. The deletion of depR1 led to a reduction in dptEp activity and the cessation of daptomycin production. The ΔdepR1 mutant produced less red pigment and failed to sporulate on R5 medium. This suggests that DepR1 plays a positive role in the control of morphological differentiation. Moreover, DepR1 was positively autoregulated by directly binding to its own promoter. This might account for the positive feedback regulation of daptomycin production. Based on these positive effects, genetic engineering by overexpression of depR1 raised daptomycin production and shortened the fermentation period both in flask and in fermentor.


Subject(s)
Anti-Bacterial Agents/biosynthesis , Daptomycin/biosynthesis , Gene Expression Regulation, Bacterial , Streptomyces/genetics , Streptomyces/metabolism , Transcription Factors/genetics , DNA Footprinting , DNA, Bacterial/metabolism , Electrophoretic Mobility Shift Assay , Gene Deletion , Pigments, Biological/biosynthesis , Protein Binding , Spores, Bacterial/growth & development , Streptomyces/growth & development , Transcription, Genetic
3.
J Biol Chem ; 290(12): 7992-8001, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25648897

ABSTRACT

Daptomycin is a cyclic lipopeptide antibiotic produced by Streptomyces roseosporus. To reveal the transcriptional regulatory mechanism of daptomycin biosynthesis, we used the biotinylated dptE promoter (dptEp) as a probe to affinity isolate the dptEp-interactive protein AtrA, a TetR family transcriptional regulator, from the proteome of mycelia. AtrA bound directly to dptEp to positively regulate gene cluster expression and daptomycin production. Meanwhile, both ΔatrA and ΔadpA mutants showed bald phenotype and null production of daptomycin. AdpA positively regulated atrA expression by direct interaction with atrA promoter (atrAp), and removal of ArpA in S. roseosporus, a homolog of the A-factor receptor, resulted in accelerated morphological development and increased daptomycin production, suggesting that atrA was the target of AdpA to mediate the A-factor signaling pathway. Furthermore, AtrA was positively autoregulated by binding to its own promoter atrAp. Thus, for the first time at the transcriptional level, we have identified an autoregulator, AtrA, that directly mediates the A-factor signaling pathway to regulate the proper production of daptomycin.


Subject(s)
Bacterial Proteins/genetics , Daptomycin/metabolism , Gene Expression Regulation, Bacterial , Multigene Family , Streptomyces/genetics , Transcription, Genetic , Base Sequence , Chromatography, High Pressure Liquid , DNA Primers , Genes, Bacterial , Molecular Sequence Data , Streptomyces/metabolism
4.
FEBS Lett ; 588(4): 608-13, 2014 Feb 14.
Article in English | MEDLINE | ID: mdl-24440356

ABSTRACT

In Streptomyces coelicolor, the ECF sigma factor SigT negatively regulates cell differentiation, and is degraded by ClpP protease in a dual positive feedback manner. Here we further report that the proteasome is required for degradation of SigT, but not for degradation of its anti-sigma factor RstA, and RstA can protect SigT from degradation independent of the proteasome. Meanwhile, deletion of the proteasome showed reduced production of secondary metabolites, and the fermentation medium from wild type could promote SigT degradation. Furthermore, overexpression of redD or actII-orf4 in the proteasome-deficiency mutant resulted in SigT degradation and over-production of both undecylprodigiosin and actinorhodin. Therefore the proteasome is required for SigT degradation by affecting the production of secondary metabolites during cell differentiation.


Subject(s)
Bacterial Proteins/metabolism , Cell Differentiation , Proteasome Endopeptidase Complex/metabolism , Sigma Factor/metabolism , Streptomyces coelicolor/cytology , Streptomyces coelicolor/metabolism , Anthraquinones/metabolism , Prodigiosin/analogs & derivatives , Prodigiosin/biosynthesis , Proteolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...