Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 673: 711-721, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38901361

ABSTRACT

Y2O3 is a cost-effective and environmentally friendly wide-band gap photocatalyst with extensive application potential. However, its limited ability to be excited by visible light restricts its practical uses. In this study, we coupled the narrow bandgap semiconductor AgI with Y2O3 to form a Z-scheme heterostructure, significantly promoting its photocatalytic degradation activity. Characterization and experimental results demonstrated the formation of Y-O-Ag bonds through coupling with AgI, leading to an increase in oxygen vacancies in Y2O3, which promotes the chemisorption of H2O and O2. The Y-O-Ag bond introduction promotes electron transfer, improves hole utilization, and boosts energy transfer efficiency, thus promoting the efficient generation of ·OH and 1O2. The photocatalytic degradation rates of RhB and o-nitrophenol by 7.5% AgI/Y2O3 were 26.5 and 4 times higher than those of pure Y2O3, respectively. This study provides theoretical support for the Z-scheme heterojunction to improve photocatalytic activity and offers efficient solutions and practical design ideas for sewage purification.

2.
Eco Environ Health ; 2(1): 3-15, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38074455

ABSTRACT

Compared to single microbial strains, complex interactions between microbial consortia composed of various microorganisms have been shown to be effective in expanding ecological functions and accomplishing biological processes. Electroactive microorganisms (EMs) and degradable microorganisms (DMs) play vital roles in bioenergy production and the degradation of organic pollutants hazardous to human health. These microorganisms can strongly interact with other microorganisms and promote metabolic cooperation, thus facilitating electricity production and pollutant degradation. In this review, we describe several specific types of EMs and DMs based on their ability to adapt to different environments, and summarize the mechanism of EMs in extracellular electron transfer. The effects of interactions between EMs and DMs are evaluated in terms of electricity production and degradation efficiency. The principle of the enhancement in microbial consortia is also introduced, such as improved biomass, changed degradation pathways, and biocatalytic potentials, which are directly or indirectly conducive to human health.

3.
Proc Natl Acad Sci U S A ; 120(26): e2305378120, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37339221

ABSTRACT

Hydrogen peroxide (H2O2) is an important green oxidant in the field of sewage treatment, and how to improve its activation efficiency and generate free radicals with stronger oxidation performance is a key issue in current research. Herein, we synthesized a Cu-doped α-Fe2O3 catalyst (7% Cu-Fe2O3) for activation of H2O2 under visible light for degradation of organic pollutants. The introduction of a Cu dopant changed the d-band center of Fe closer to the Fermi level, which enhanced the adsorption and activation of the Fe site for H2O2, and the cleavage pathway of H2O2 changed from heterolytic cleavage to homolytic cleavage, thereby improving the selectivity of •OH generation. In addition, Cu doping also promoted the light absorption ability of α-Fe2O3 and the separation of hole-electron pairs, which enhanced its photocatalytic activities. Benefiting from the high selectivity of •OH, 7% Cu-Fe2O3 exhibited efficient degradation activities against ciprofloxacin, the degradation rate was 3.6 times as much as that of α-Fe2O3, and it had good degradation efficiency for a variety of organic pollutants.

4.
Toxics ; 10(11)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36355964

ABSTRACT

The CdSe nanorod as a one-dimensional nanostructure has an excellent performance in many fields, such as healthcare, new energy, and environmental protection. Thus, it is crucial to investigate its potential adverse health effects prior to their wide exposure. The lung tissue would be the main target organ after CdSe nanorods enter living systems. Here, we showed that pulmonary instillation of CdSe nanorods could decrease the vitality of T-SOD and T-AOC in lung tissues of a rat, increase MDA and hydroxyproline levels and lipid peroxidation products, induce mitochondrial cristae breakage and vacuolization, cause inflammatory responses, and finally induce pulmonary fibrosis. The oral administration of modified procyanidinere could significantly increase the content of antioxidant enzymes, scavenge free radicals, reduce lipid peroxidation, and have protective effects on CdSe nanorods-induced pulmonary fibrosis. The benefit is not only in the early inflammatory stage but also in the later stages of the CdSe nanorods-induced pulmonary fibrosis.

5.
Environ Sci Technol ; 53(22): 13408-13416, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31362495

ABSTRACT

PbSe nanoparticles (PbSe-NPs) attract ever-growing interest owing to their great promise in various fields. However, potential toxic effects of PbSe-NPs on male reproductive systems have not been reported. This study aimed to determine whether early-life exposure to PbSe-NPs could affect male reproductive systems and other related health effects in rats. The male rats were intraperitoneally injected with 10 mg/kg/week PbSe-NPs for 60 days followed by a series of reproductive-related analyses. We found that the nanoparticles could accumulate in testes in a size-dependent manner. Furthermore, accumulation of PbSe-NPs resulted in oxidative stress and disorder of normal serum sex hormones. Endoplasmic reticulum and mitochondria-mediated cell apoptosis were triggered via oxidative stress, as shown by upregulation of cytoplasmic Cyt-c, Bax, cleaved Caspase-3, GRP78, and Caspase-12. Notably, PbSe-NP administration led to reduction in the quantity and quality of sperm, which caused a great fertility decrease. In contrast, released Pb2+ from PbSe-NPs did not result in any testis toxicity and fertility declines. These results demonstrate that PbSe-NPs could cause severe reproductive toxicity in a size-dependent manner and these toxic effects should be responsible for PbSe-NPs themselves rather than released Pb2+. The application of PbSe-NPs might be a double-edged sword, and corresponding measures should be taken before use.


Subject(s)
Nanoparticles , Selenium Compounds , Animals , Apoptosis , Lead , Male , Oxidative Stress , Rats
6.
Environ Sci Technol ; 52(8): 4850-4860, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29554418

ABSTRACT

Nanocolloids are widespread in natural water systems, but their characterization and ecological risks are largely unknown. Herein, tangential flow ultrafiltration (TFU) was used to separate and concentrate nanocolloids from surface waters. Unexpectedly, nanocolloids were present in high concentrations ranging from 3.7 to 7.2 mg/L in the surface waters of the Harihe River in Tianjin City, China. Most of the nanocolloids were 10-40 nm in size, contained various trace metals and polycyclic aromatic hydrocarbons, and exhibited fluorescence properties. Envelopment effects and aggregation of Chlorella vulgaris in the presence of nanocolloids were observed. Nanocolloids entered cells and nanocolloid-exposed cells exhibited stronger plasmolysis, chloroplast damage and more starch grains than the control cells. Moreover, nanocolloids inhibited the cell growth, promoted reactive oxygen species (ROS), reduce the chlorophyll a content and increased the cell permeability. The genotoxicity of nanocolloids was also observed. The metabolomics analysis revealed a significant ( p < 0.05) downregulation of amino acids and upregulation of fatty acids contributing to ROS increase, chlorophyll a decrease and plasmolysis. The present work reveals that nanocolloids, which are different from specific, engineered nanoparticles (e.g., Ag nanoparticles), are present at high concentrations, exhibit an obvious toxicity in environments, and deserve more attention in the future.


Subject(s)
Chlorella vulgaris , Metal Nanoparticles , Water Pollutants, Chemical , China , Chlorophyll A , Silver
7.
PLoS One ; 9(12): e115581, 2014.
Article in English | MEDLINE | ID: mdl-25545686

ABSTRACT

Hydroponic experiments were conducted to investigate the variation of root exudates from the hyperaccumulator Sedum alfredii under the stress of cadmium (Cd). S. alfredii was cultured for 4 days in the nutrient solution spiked with CdCl2 at concentrations of 0, 5, 10, 40, and 400 µM Cd after the pre-culture. The root exudates were collected and analyzed by GC-MS, and 62 compounds were identified. Of these compounds, the orthogonal partial least-squares discrimination analysis (OPLS-DA) showed that there were a distinct difference among the root exudates with different Cd treatments and 20 compounds resulting in this difference were found out. Changing tendencies in the relative content of these 20 compounds under the different Cd treatments were analyzed. These results indicated that trehalose, erythritol, naphthalene, d-pinitol and n-octacosane might be closely related to the Cd stabilization, phosphoric acid, tetradecanoic acid, oxalic acid, threonic acid and glycine could be attributed to the Cd mobilization, and mannitol, oleic acid, 3-hydroxybutanoic acid, fructose, octacosanol and ribitol could copy well with the Cd stress.


Subject(s)
Cadmium Chloride/toxicity , Metabolome/drug effects , Plant Roots/drug effects , Sedum/drug effects , Plant Extracts/chemistry , Plant Roots/metabolism , Sedum/metabolism , Stress, Physiological
8.
Sci Rep ; 4: 6122, 2014 Aug 19.
Article in English | MEDLINE | ID: mdl-25134726

ABSTRACT

Graphene oxide (GO) is widely used in various fields and is considered to be relatively biocompatible. Herein, "indirect" nanotoxicity is first defined as toxic amplification of toxicants or pollutants by nanomaterials. This work revealed that GO greatly amplifies the phytotoxicity of arsenic (As), a widespread contaminant, in wheat, for example, causing a decrease in biomass and root numbers and increasing oxidative stress, which are thought to be regulated by its metabolisms. Compared with As or GO alone, GO combined with As inhibited the metabolism of carbohydrates, enhanced amino acid and secondary metabolism and disrupted fatty acid metabolism and the urea cycle. GO also triggered damage to cellular structures and electrolyte leakage and enhanced the uptake of GO and As. Co-transport of GO-loading As and transformation of As(V) to high-toxicity As(III) by GO were observed. The generation of dimethylarsinate, produced from the detoxification of inorganic As, was inhibited by GO in plants. GO also regulated phosphate transporter gene expression and arsenate reductase activity to influence the uptake and transformation of As, respectively. Moreover, the above effects of GO were concentration dependent. Given the widespread exposure to As in agriculture, the indirect nanotoxicity of GO should be carefully considered in food safety.


Subject(s)
Arsenic/toxicity , Graphite/toxicity , Triticum/drug effects , Arsenic/chemistry , Arsenic/metabolism , Cacodylic Acid/chemistry , Cacodylic Acid/metabolism , Graphite/chemistry , Oxidative Stress/drug effects , Oxides/chemistry , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Principal Component Analysis , Triticum/growth & development , Triticum/metabolism
9.
Environ Sci Technol ; 48(12): 6919-27, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24857237

ABSTRACT

Graphene-related research has intensified rapidly in a wide range of disciplines, but few studies have examined ecosystem risks, particularly phytotoxicity. This study revealed that graphene significantly inhibits the number of wheat roots and the biosynthesis of chlorophyll, and altered the morphology of shoots. Humic acid (HA), a ubiquitous form of natural organic matter, significantly (P < 0.05) relieved this phytotoxicity and recovered the sharp morphology of shoot tips. Both graphene and graphene-HA were transferred from wheat roots to shoots and were found in the cytoplasms and chloroplasts. HA increased the disordered structure and surface negative charges, and reduced the aggregation of graphene. HA enhanced the storage of graphene in vacuoles, potentially indicating an effective detoxification path. The content of cadaverine, alkane, glyconic acid, and aconitic acid was up-regulated by graphene, greatly contributing to the observed phytotoxicity. Conversely, inositol, phenylalanine, phthalic acid, and octadecanoic acid were up-regulated by graphene-HA. The metabolic pathway analysis revealed that the direction of metabolic fluxes governed nanotoxicity. This work presents the innovative concept that HA acts as a natural antidote of graphene by regulating its translocation and metabolic fluxes in vivo. This knowledge is critical for avoiding the overestimation of nanomaterial risks and can be used to control nanomaterial contamination.


Subject(s)
Antidotes/pharmacology , Graphite/toxicity , Humic Substances/analysis , Metabolic Flux Analysis , Nanostructures/chemistry , Oryza/metabolism , Triticum/metabolism , Adsorption , Biological Transport/drug effects , Chlorophyll/biosynthesis , Metabolome/drug effects , Oryza/drug effects , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/ultrastructure , Plant Shoots/drug effects , Plant Shoots/metabolism , Plant Shoots/ultrastructure , Spectrum Analysis, Raman , Triticum/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...