Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Food Funct ; 15(9): 4954-4969, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38602356

ABSTRACT

Overdose of Acetaminophen (APAP) is a major contributor to acute liver injury (ALI), a complex pathological process with limited effective treatments. Emerging evidence links lipid peroxidation to APAP-induced ALI. Cynarin (Cyn), a hydroxycinnamic acid derivative, exhibits liver protective effects, but whether it mitigates APAP-induced ALI is unclear. Our aim was to verify the protective impact of Cyn on APAP-induced ALI and elucidate the molecular mechanisms governing this process. Herein, the regulation of the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) interaction was determined to be a novel mechanism underlying this protective impact of Cyn against APAP-induced ALI. Nrf2 deficiency increased the severity of APAP-induced ALI and lipid peroxidation and counteracted the protective effect of Cyn against this pathology. Additionally, Cyn promoted the dissociation of Nrf2 from Keap1, enhancing the nuclear translocation of Nrf2 and the transcription of downstream antioxidant proteins, thereby inhibiting lipid peroxidation. Molecular docking demonstrated that Cyn bound competitively to Keap1, and overexpression of Keap1 reversed Nrf2-activated anti-lipid peroxidation. Additionally, Cyn activated the adenosine monophosphate-activated protein kinase (AMPK)/sirtuin (SIRT)3 signaling pathway, which exhibits a protective effect on APAP-induced ALI. These findings propose that Cyn alleviates APAP-induced ALI by enhancing the Keap1/Nrf2-mediated lipid peroxidation defense via activation of the AMPK/SIRT3 signaling pathway.


Subject(s)
AMP-Activated Protein Kinases , Acetaminophen , Chemical and Drug Induced Liver Injury , Kelch-Like ECH-Associated Protein 1 , Lipid Peroxidation , NF-E2-Related Factor 2 , Signal Transduction , Acetaminophen/adverse effects , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Animals , Lipid Peroxidation/drug effects , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Signal Transduction/drug effects , Mice , Male , AMP-Activated Protein Kinases/metabolism , Sirtuin 3/metabolism , Sirtuin 3/genetics , Mice, Inbred C57BL , Humans , Coumaric Acids/pharmacology , Liver/metabolism , Liver/drug effects
2.
Biochem Pharmacol ; 221: 116044, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336157

ABSTRACT

Long non-coding RNAs (lncRNAs) have been identified as decisive regulators of liver fibrosis. Hepatic stellate cells (HSCs), major hepatic cells contributing to liver fibrosis, undergo metabolic reprogramming for transdifferentiation and activation maintenance. As a crucial part of metabolic reprogramming, glutaminolysis fuels the tricyclic acid (TCA) cycle that renders HSCs addicted to glutamine. However, how lncRNAs reprogram glutamine metabolism in HSCs is unknown. For this research, we characterized the pro-fibrogenic function of small nucleolar host gene 11 (SNHG11). Our data showed that in carbon tetrachloride (CCl4, 7 µL/g, intraperitoneally) treated C57BL/6J mice, SNHG11 expression was highly up-regulated in fibrotic livers and activated primary HSCs. SNHG11 knockdown attenuated the accumulation of fibrotic markers α-SMA and Col1A1 in liver fibrosis tissues and activated HSCs. Western blot and qRT-PCR assays demonstrated that glutaminase (GLS), the rate-limiting enzyme for glutaminolysis, was a downstream target of SNHG11. Furthermore, SNHG11 upregulated glutaminolysis in HSCs through the activation of the Wnt/ß-catenin signaling pathway. The results highlighted that SNHG11 is a glutaminolysis-regulated lncRNA that promotes liver fibrosis. A novel insight into the metabolic mechanism that reprograms glutaminolysis in HSCs could be exploited as anti-fibrotic targets.


Subject(s)
Glutaminase , RNA, Long Noncoding , Mice , Animals , Mice, Inbred C57BL , Glutaminase/genetics , RNA, Long Noncoding/genetics , Hepatic Stellate Cells , beta Catenin/genetics , Glutamine , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics
3.
Free Radic Biol Med ; 208: 571-586, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37696420

ABSTRACT

Cisplatin (CPT) is one of the standard treatments for hepatocellular carcinoma (HCC). However, its use is limits as a monotherapy due to drug resistance, and the underlying mechanism remains unclear. To solve this problem, we tried using canagliflozin (CANA), a clinical drug for diabetes, to reduce chemoresistance to CPT, and the result showed that CANA could vigorously inhibit cell proliferation and migration independent of the original target SGLT2. Mechanistically, CANA reduced aerobic glycolysis in HCC by targeting PKM2. The downregulated PKM2 directly bound to the transcription factor c-Myc in the cytoplasm to form a complex, which upregulated the level of phosphorylated c-Myc Thr58 and promoted the ubiquitination and degradation of c-Myc. Decreased c-Myc reduced the expression of GLS1, a key enzyme in glutamine metabolism, leading to impaired glutamine utilization. Finally, intracellular glutamine starvation induced ferroptosis and sensitized HCC to CPT. In conclusion, our study showed that CANA re-sensitized HCC to CPT by inducing ferroptosis through dual effects on glycolysis and glutamine metabolism. This is a novel mechanism to increase chemosensitivity, which may provide compatible chemotherapy drugs for HCC.


Subject(s)
Carcinoma, Hepatocellular , Drug Resistance, Neoplasm , Liver Neoplasms , Humans , Canagliflozin/pharmacology , Canagliflozin/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Glutamine/metabolism , Glycolysis , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Proto-Oncogene Proteins c-myc/drug effects , Thyroid Hormone-Binding Proteins
4.
Ecotoxicol Environ Saf ; 262: 115331, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37556956

ABSTRACT

Acetaminophen (APAP) overdose has long been considered a major cause of drug-induced liver injury. Ferroptosis is a type of programmed cell death mediated by iron-dependent lipid peroxidation. Endoplasmic reticulum (ER) stress is a systemic response triggered by the accumulation of unfolded or misfolded proteins in the ER. Ferroptosis and ER stress have been proven to contribute to the progression of APAP-induced acute liver injury (ALI). It was reported that salidroside protects against APAP-induced ALI, but the potential mechanism remain unknown. In this study, male C57BL/6 J mice were intraperitoneally (i.p.) injected APAP (500 mg/kg) to induce an ALI model. Salidroside was i.p. injected at a dose of 100 mg/kg 2 h prior to APAP administration. Mice were sacrificed 12 h after APAP injection and the liver and serum of the mice were obtained for histological and biochemistry analysis. AML12 cells were used in in vitro assays. The results indicated that salidroside mitigated glutathione degradation via inhibiting cation transport regulator homolog 1 (CHAC1) to attenuate ferroptosis, and simultaneously suppressing PERK-eIF2α-ATF4 axis-mediated ER stress, thus alleviating APAP-induced ALI. However, PERK activator CCT020312 and overexpression of ATF4 inhibited the protective function of salidroside on CHAC1-mediated ferroptosis. Besides this, activation of the AMPK/SIRT1 signaling pathway by salidroside was demonstrated to have a protective effect against APAP-induced ALI. Interestingly, selective inhibition of SIRT1 ameliorated the protective effects of salidroside on ER stress and ferroptosis. Overall, salidroside plays a significant part in the mitigation of APAP-induced ALI by activating the AMPK/SIRT1 signaling to inhibit ER stress-mediated ferroptosis in the ATF4-CHAC1 axis.

SELECTION OF CITATIONS
SEARCH DETAIL
...