Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(47): 18205-18211, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37421343

ABSTRACT

Pyridalyl, as a novel insecticide with an unknown mode of action, has shown excellent control efficacy against lepidopterous larvae and thrips. Previous modifications of this compound have mostly focused on the pyridine moiety, with limited information available about modifications to other parts of pyridalyl. In this paper, we report the synthesis and insecticidal activity of a series of azidopyridryl-containing dichlorolpropene ether derivatives, based on modifications to the middle alkyl chain of pyridalyl. Screening results for insecticidal activity indicate that our synthesized compounds show moderate to high activities at the tested concentrations against P. xylostella. Particularly, compound III-10 exhibits a LC50 value of 0.831 mg L-1, compared to the LC50 value of pyridalyl at 2.021 mg L-1. Furthermore, compound III-10 also displays a relatively broad insecticidal spectrum against Lepidoptera pests M. separata, C. suppressalis, O. nubilalis, and C. medinalis. Finally, in field trials, III-10 demonstrates better control efficiency against Chilo suppressalis compared to pyridalyl. Overall, our findings suggest that the modification of the middle alkyl chain of pyridalyl may be a promising approach for developing insecticides with improved efficacy.


Subject(s)
Insecticides , Moths , Animals , Structure-Activity Relationship , Insecticides/pharmacology , Ether , Ethers/pharmacology , Larva , Molecular Structure
2.
Bioorg Med Chem ; 72: 116968, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36054994

ABSTRACT

Oxetanocin A (Oxt-A), a novel oxetanosyl N-glycoside nucleoside, was isolated from Bacillus megaterium in 1986. It carries an oxetane ring on the sugar moiety of the nucleoside scaffold, which contributes to differences in its structure from those of common tetrahydrofuranyl-based nucleosides. In view of the unique 3D-spatial framework, the complete synthesis of Oxt-A has been achieved by multiple research groups. The pharmacological properties of this natural product have also been broadly investigated by pharmacists and chemists since its discovery. Notably, the potential antiviral effect of Oxt-A has captured attention of researchers in the field of antiviral agent development. Furthermore, epidemic outbreaks caused by viruses have been stimulating the preparation and modification of various Oxt-A analogs over the past few decades. However, none of the studies have overviewed the antiviral efficacies of this naturally occurring scaffold yet. Thus, the present review summarizes the synthesis, structural modification, and antiviral activities of Oxt-A and its derivatives. We believe that these comprehensive descriptions will provide a novel perspective for the discovery of antivirus drugs with well-improved performance and pave newer paths for combating sudden public health issues triggered by viruses in the future.


Subject(s)
Antiviral Agents , Biological Products , Adenine/analogs & derivatives , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Biological Products/pharmacology , Nucleosides/pharmacology , Sugars
3.
J Agric Food Chem ; 69(20): 5734-5745, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33999624

ABSTRACT

Exploring novel p-hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, HPPD) inhibitors has become one of the most promising research directions in herbicide innovation. On the basis of our tremendous interest in exploiting more powerful HPPD inhibitors, we designed a family of benzyl-containing triketone-aminopyridines via a structure-based drug design (SBDD) strategy and then synthesized them. Among these prepared derivatives, the best active 3-hydroxy-2-(3,5,6-trichloro-4-((4-isopropylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one (23, IC50 = 0.047 µM) exhibited a 5.8-fold enhancement in inhibiting Arabidopsis thaliana (At) HPPD activity over that of commercial mesotrione (IC50 = 0.273 µM). The predicted docking models and calculated energy contributions of the key residues for small molecules suggested that an additional π-π stacking interaction with Phe-392 and hydrophobic contacts with Met-335 and Pro-384 were detected in AtHPPD upon the binding of the best active compound 23 compared with that of the reference mesotrione. Such a molecular mechanism and the resulting binding affinities coincide with the proposed design scheme and experimental values. It is noteworthy that inhibitors 16 (3-hydroxy-2-(3,5,6-trichloro-4-((4-chlorobenzyl)amino)picolinoyl)cyclohex-2-en-1-one), 22 (3-hydroxy-2-(3,5,6-trichloro-4-((4-methylbenzyl)amino)picolinoyl)cyclohex-2-en-1-one), and 23 displayed excellent greenhouse herbicidal effects at 150 g of active ingredient (ai)/ha after postemergence treatment. Furthermore, compound 16 showed superior weed-controlling efficacy against Setaria viridis (S. viridis) versus that of the positive control mesotrione at multiple test dosages (120, 60, and 30 g ai/ha). These findings imply that compound 16, as a novel lead of HPPD inhibitors, possesses great potential for application in specifically combating the malignant weed S. viridis.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Herbicides , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Aminopyridines , Enzyme Inhibitors/pharmacology , Herbicides/pharmacology , Phenylpyruvic Acids , Plant Weeds/metabolism , Structure-Activity Relationship
4.
Front Plant Sci ; 7: 365, 2016.
Article in English | MEDLINE | ID: mdl-27092146

ABSTRACT

The aim of this study was to explore the effects of different density treatments on potato spatial distribution and yield in spring and fall. Plant density influenced yield and composition, horizontal, and vertical distribution distances between potato tubers, and spatial distribution position of tuber weights. The results indicated that: (1) Spring potato yield had a convex quadratic curve relationship with density, and the highest value was observed at 15.75 × 10(4) tubers per hectare. However, the yield of fall potatoes showed a linear relationship with plant density, and the highest value was observed at 18 × 10(4) tubers per hectare; (2) Density had a greater influence on the tuber weight of spring potatoes and fruit number of single fall potatoes; (3) The number of potato tubers in the longitudinal concentration exhibited a negative linear relationship with density, whereas the average vertical distribution distance of tubers exhibited a positive incremental hyperbolic relationship. For spring and fall potato tubers, the maximum distances were 8.4152 and 6.3316 cm, and the minimum distances 8.7666 and 6.9366 cm, respectively; and (4) Based on the artificial neural network model of the spatial distribution of tuber weight, density mainly affected the number and spatial distribution of tubers over 80 g. Tubers over 80 g were mainly distributed longitudinally (6-10 cm) and transversely (12-20 cm) within the high density treatment, and the transverse distribution scope and number of tubers over 80 g were reduced significantly. Spring potato tubers over 80 g grown at the lowest density were mainly distributed between 12 and 20 cm, whereas those at the highest density were primarily distributed between 10 and 15 cm.

SELECTION OF CITATIONS
SEARCH DETAIL
...