Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 89(2): 1241-1248, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38163764

ABSTRACT

Lewis acid-catalyzed cycloaddition between bicyclo[1.1.0]butanes (BCBs) and unsaturated substrates has recently been demonstrated to be a powerful strategy for synthesizing bicyclo[2.1.1]hexanes. However, their reaction mechanisms remain elusive. This computational work explored the recently developed TMSOTf-catalyzed cycloaddition of BCB ketone to ketene and determined the rate-determining step as the activation of BCB ketone. Contrary to the previous proposal of BCB enolate as the active species, this work instead identified the catalytically active species to be a partially Lewis acid-activated BCB cation, which shows a greater electrophilicity and larger orbital interactions with ketene compared to those of the pristine BCB. The most favorable reaction pathway uniquely utilizes this activated BCB species as an electrophile to react with ketene as a nucleophile, while the previously proposed enolate is relatively inactive. Moreover, the in situ-generated TfO anion is revealed to be non-innocent, and its coordination mode and orientation could affect the reaction kinetics.

2.
JACS Au ; 3(7): 1800-1819, 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37502166

ABSTRACT

A multistate energy decomposition analysis (MS-EDA) method is described to dissect the energy components in molecular complexes in excited states. In MS-EDA, the total binding energy of an excimer or an exciplex is partitioned into a ground-state term, called local interaction energy, and excited-state contributions that include exciton excitation energy, superexchange stabilization, and orbital and configuration-state delocalization. An important feature of MS-EDA is that key intermediate states associated with different energy terms can be variationally optimized, providing quantitative insights into widely used physical concepts such as exciton delocalization and superexchange charge-transfer effects in excited states. By introducing structure-weighted adiabatic excitation energy as the minimum photoexcitation energy needed to produce an excited-state complex, the binding energy of an exciplex and excimer can be defined. On the basis of the nature of intermolecular forces through MS-EDA analysis, it was found that molecular complexes in the excited states can be classified into three main categories, including (1) encounter excited-state complex, (2) charge-transfer exciplex, and (3) intimate excimer or exciplex. The illustrative examples in this Perspective highlight the interplay of local excitation polarization, exciton resonance, and superexchange effects in molecular excited states. It is hoped that MS-EDA can be a useful tool for understanding photochemical and photobiological processes.

3.
JACS Au ; 1(2): 233-244, 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-34467287

ABSTRACT

Carbon dioxide capture, corresponding to the recombination process of decarboxylation reactions of organic acids, is typically barrierless in the gas phase and has a relatively low barrier in aprotic solvents. However, these processes often encounter significant solvent-reorganization-induced barriers in aqueous solution if the decarboxylation product is not immediately protonated. Both the intrinsic stereoelectronic effects and solute-solvent interactions play critical roles in determining the overall decarboxylation equilibrium and free energy barrier. An understanding of the interplay of these factors is important for designing novel materials applied to greenhouse gas capture and storage as well as for unraveling the catalytic mechanisms of a range of carboxy lyases in biological CO2 production. A range of decarboxylation reactions of organic acids with rates spanning nearly 30 orders of magnitude have been examined through dual-level combined quantum mechanical and molecular mechanical simulations to help elucidate the origin of solvation-induced free energy barriers for decarboxylation and the reverse carboxylation reactions in water.

5.
J Am Chem Soc ; 143(1): 137-141, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33375792

ABSTRACT

In aqueous solution, biological decarboxylation reactions proceed irreversibly to completion, whereas the reverse carboxylation processes are typically powered by the hydrolysis of ATP. The exchange of the carboxylate of ring-substituted arylacetates with isotope-labeled CO2 in polar aprotic solvents reported recently suggests a dramatic change in the partition of reaction pathways. Yet, there is little experimental data pertinent to the kinetic barriers for protonation and thermodynamic data on CO2 capture by the carbanions of decarboxylation reactions. Employing a combined quantum mechanical and molecular mechanical simulation approach, we investigated the decarboxylation reactions of a series of organic carboxylate compounds in aqueous and in dimethylformamide solutions, revealing that the reverse carboxylation barriers in solution are fully induced by solvent effects. A linear Bell-Evans-Polanyi relationship was found between the rates of decarboxylation and the Gibbs energies of reaction, indicating diminishing recombination barriers in DMF. In contrast, protonation of the carbanions by the DMF solvent has large free energy barriers, rendering the competing exchange of isotope-labeled CO2 reversible in DMF. The finding of an intricate interplay of carbanion stability and solute-solvent interaction in decarboxylation and carboxylation could be useful to designing novel materials for CO2 capture.


Subject(s)
Carbon Dioxide/chemistry , Carboxylic Acids/chemistry , Dimethylformamide/chemistry , Water/chemistry , Decarboxylation , Molecular Dynamics Simulation , Solvents/chemistry , Thermodynamics
6.
Org Lett ; 21(12): 4826-4830, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31192618

ABSTRACT

Compared to the most active anion-transporting channel that requires a channel:lipid molar ratio of 1:330 (0.3 mol % relative to lipid) to achieve 50% activity, a structurally simple pore-forming tripeptide 6L310 was found to exhibit an extraordinarily strong ability to self-assemble into stable possibly barrel-shaped exceptionally active channels, with record-low EC50 values of 4.0, 3.0, 1.6, 2.6, and 2.6 nM (e.g., 0.005-0.013 mol % relative to lipid) for Cl-, Br-, I-, NO3-, and ClO4-, respectively.


Subject(s)
Ion Channels/chemistry , Oligopeptides/chemistry , Anions/chemistry , Hydrogen-Ion Concentration , Molecular Dynamics Simulation , Molecular Structure , Oligopeptides/chemical synthesis , Sodium Chloride/chemistry
7.
J Am Chem Soc ; 140(28): 8817-8826, 2018 07 18.
Article in English | MEDLINE | ID: mdl-29927580

ABSTRACT

We describe here a unique family of pore-forming anion-transporting peptides possessing a single-amino-acid-derived peptidic backbone that is the shortest among natural and synthetic pore-forming peptides. These monopeptides with built-in H-bonding capacity self-assemble into an H-bonded 1D columnar structure, presenting three types of exteriorly arranged hydrophobic side chains that closely mimic the overall topology of an α-helix. Dynamic interactions among these side chains and membrane lipids proceed in a way likely similar to how α-helix bundle is formed. This subsequently enables oligomerization of these rod-like structures to form ring-shaped ensembles of varying sizes with a pore size of smaller than 1.0 nm in diameter but sufficiently large for transporting anions across the membrane. The intrinsic high modularity in the backbone further allows rapid tuning in side chains for combinatorial optimization of channel's ion-transport activity, culminating in the discovery of an exceptionally active anion-transporting monopeptide 6L10 with an EC50 of 0.10 µM for nitrate anions.


Subject(s)
Anions/chemistry , Peptides/chemistry , Hydrogen Bonding , Ion Transport , Membranes, Artificial , Models, Molecular , Peptides/chemical synthesis , Phosphatidylcholines/chemistry , Porosity , Protein Conformation, alpha-Helical , Protein Multimerization
8.
Chem Sci ; 9(17): 4044-4051, 2018 May 07.
Article in English | MEDLINE | ID: mdl-29780533

ABSTRACT

Chloride-selective transmembrane carriers or channels might have possible uses in treating channelopathies or cancers. While chloride carriers have been extensively investigated, the corresponding chloride channels have remained limitedly studied. Moreover, all hitherto reported channel systems lack clearly definable and readily modifiable positions in their structures for the reliable construction and combinatorial optimization of their ion transport properties. As a result, the existing channels are limited by their large molecular weight, weak activity or low anion selectivity. In this report, we describe a readily accessible and robust monopeptide-based scaffold for the reliable construction of halogen bond-mediated artificial anion channels via directional assembly of electron-deficient iodine atoms, which create a transmembrane pathway for facilitating anion transport. The high intrinsic modularity of the backbone of the scaffold, which enables the rapid and combinatorial optimization of the transport activity and selectivity of channels, effectively delivers a highly active chloride channel A10. Such high activity in chloride transport subsequently leads to an excellent IC50 value of 20 µM toward inhibiting the growth of human breast cancer cells (BT-474), an anticancer activity that is even higher than that of the well-known anticancer agent cisplatin.

9.
J Biol Rhythms ; 17(5): 392-405, 2002 Oct.
Article in English | MEDLINE | ID: mdl-12375616

ABSTRACT

In seasonal mammals, photoperiod change is associated with a suite of alterations in physiology. It has recently been proposed that the immune response is one of the systems regulated by changes in photoperiod, although this hypothesis has not been rigorously challenged by assays of functional immune responses. The aim of this study was to test the hypothesis that photoperiod modulates immune responsiveness in Syrian (Mesocricetus auratus) and Siberian (Phodopus sungorus) hamsters. Consistent with previously reported data, short-day-housed (SD) animals exhibited a significant increase in lymph node cell (LNC) numbers and increased cellular proliferation in response to the polyclonal mitogen concanavalin A compared to long-day-housed (LD) animals. In contrast, LNC numbers from intact or gonadectomized SD animals that had been sensitized with the antigen dinitrofluorobenzene (DNFB) exhibited a reduced ex vivo proliferative response and reduced production of interleukin-6 (IL-6) compared to LD animals. In vivo studies of the contact hypersensitivity response of animals that had previously been sensitized, and subsequently challenged, with DNFB were similar in SD and LD animals, as was the proliferative activity of LNC recovered from these animals. There were also no photoperiodic differences in the antidinitrophenyl antibody response of animals sensitized with DNFB, or the anti-sheep red blood cell (srbc) response of animals immunized with srbc. Furthermore, no differences could be detected in the activity of natural killer cells from spleens of LD and SD Siberian hamsters, or in lipopolysaccharide-induced IL-6 production by LD and SD Syrian hamsters in vivo. Thus, although photoperiod is able to influence factors regulating the gross number and non-antigen-specific proliferation of lymphocytes in seasonally breeding mammals, day length does not directly influence activation of an effective immune response. The authors conclude, therefore, that expression of the immune response is not directly modified or compromised by photoperiod in these seasonally breeding hamster species.


Subject(s)
Antibody Formation/physiology , Immunity, Cellular/physiology , Lymphocytes/cytology , Photoperiod , Animals , Cell Division/immunology , Cricetinae , Dinitrofluorobenzene/immunology , Dinitrofluorobenzene/pharmacology , Hypersensitivity/immunology , Interleukin-1/metabolism , Interleukin-6/metabolism , Killer Cells, Natural/immunology , Lighting , Lymphocytes/drug effects , Male , Mesocricetus , Phodopus , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...