Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Med Chem ; 261: 115831, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37813064

ABSTRACT

There remain great unmet needs to treat coronavirus infections in clinic, and the development of novel antiviral agents is highly demanded. In this work, a phenotypic screening against our in-house compound library identified several cajanine derivatives with moderate antiviral activity against HCoV-OC43. Based on the scaffold of cajanine, a series of quinazoline derivatives were designed employing a scaffold-hopping strategy. After an iterative structural optimization campaign, several quinazoline derivatives with potent antiviral efficacy (EC50: ∼0.1 µM) and high selectivity (SI > 1000) were successfully identified. The preliminary mechanism of action study indicated that such quinazoline derivatives functioned at the early stage of infection. In aggregate, this work delivered a new chemical type of coronavirus inhibitors, which could be employed not only for further development of antiviral drugs but also as important chemical tools to delineate the target of action.


Subject(s)
Coronavirus Infections , Coronavirus , Humans , Antiviral Agents/chemistry , Quinazolines/pharmacology , Quinazolines/therapeutic use , Coronavirus Infections/drug therapy , Structure-Activity Relationship
2.
IEEE Trans Cybern ; 51(3): 1430-1442, 2021 Mar.
Article in English | MEDLINE | ID: mdl-31567106

ABSTRACT

Batch-processing machines (BPMs) can process a number of jobs at a time, which can be found in many industrial systems. This article considers a single BPM scheduling problem with unequal release times and job sizes. The goal is to assign jobs into batches without breaking the machine capacity constraint and then sort the batches to minimize the makespan. A self-adaptive differential evolution algorithm is developed for addressing the problem. In our proposed algorithm, mutation operators are adaptively chosen based on their historical performances. Also, control parameter values are adaptively determined based on their historical performances. Our proposed algorithm is compared to CPLEX, existing metaheuristics for this problem and conventional differential evolution algorithms through comprehensive experiments. The experimental results demonstrate that our proposed self-adaptive algorithm is more effective than other algorithms for this scheduling problem.

3.
J Org Chem ; 85(13): 8352-8359, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32496068

ABSTRACT

The hydrolysis of carbonyl sulfide (COS) to form H2S by carbonic anhydrase has been demonstrated to be a viable strategy to deliver H2S in a biological system. Herein, we describe N-dithiasuccinoyl amines as thiol-triggered COS/H2S donors. Notably, thiol species especially GSH and homocysteine can trigger the release of both COS and H2S directly from several specific analogues via an unexpected mechanism. Importantly, two representative analogues Dts-1 and Dts-5 show intracellular H2S release, and Dts-1 imparts potent anti-inflammatory effects in LPS-challenged microglia cells. In conclusion, N-dithiasuccinoyl amine could serve as promising COS/H2S donors for either H2S biological studies or H2S-based therapeutics development.


Subject(s)
Hydrogen Sulfide , Sulfhydryl Compounds , Amines , Sulfur Oxides
4.
Eur J Med Chem ; 166: 108-118, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30685534

ABSTRACT

Thirty-six N-arylsulfonyl-3-substituted indoles were designed and synthesized by combining the N-arylsulfonylindoles with aminoguanidine, semicarbazide, and thiosemicarbazide, respectively. Their antibacterial activities were screened, and cytotoxic activities were evaluated. The results showed that aminoguanidines (6) exhibited much better antibacterial activity than semicarbazides (7) and thiosemicarbazides (8). Most compounds in series 6 showed potent inhibitory activity against the tested bacterial strains, including multidrug-resistant strains, with MIC values in the range of 1.08-23.46 µM. The cytotoxic activity of the compounds 6c, 6d, 6h, 6j, 6k and 6l was assessed in two human cancer cell lines A590 and SGC7901, and one human normal cell line HEK 293T. The results indicated that compounds selected exhibited excellent activity against the tested cancer cells with IC50 values in the range of 1.51-15.12 µM suggesting the potential of them as new antibacterial and anticancer agents. What's more, the results of resistance study revealed that resistance of the tested bacteria toward 6d is not easily developed. Molecular docking studies revealed that the aminoguanidine and arylsulfonylindole moieties played a significant role in binding the target site of E. coli FabH-CoA receptor.


Subject(s)
Guanidines/chemistry , Indoles/chemical synthesis , Indoles/pharmacology , Molecular Docking Simulation , Semicarbazides/chemistry , 3-Oxoacyl-(Acyl-Carrier-Protein) Synthase , Acetyltransferases/chemistry , Acetyltransferases/metabolism , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chemistry Techniques, Synthetic , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Fatty Acid Synthase, Type II/chemistry , Fatty Acid Synthase, Type II/metabolism , Humans , Indoles/chemistry , Indoles/metabolism , Microbial Sensitivity Tests , Protein Conformation , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...